ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
М. Н. Полякова, А. М. Вербенец 2 страницаПо этому методу дети воспринимали и запоминали числа, предлагаемые им в виде квадратных числовых фигур.1 Последовательность обучения по видоизмененному монографическому методу состояла в следующем: а) описание, наблюдение и составление очередной числовой фигуры; б) запоминание состава числа; в) упражнения в арифметических действиях. Однако уже в 70-х гг. XIX в. стали появляться противники монографического метода. Недовольство методом нарастало, и в 80—90-х гг. русские математики выступили с его резкой критикой, противопоставляя ему метод изучения действий, или, иначе, вычислительный метод.
Несмотря на критику монографического метода, непризнание его в русских школах, поклонник этого метода Д. Л. Волковский издал книгу «Детский мир в числах» (1912). Книга иллюстрировалась числовыми фигурами В. А. Лая, карточками и чертежами. Она была предназначена не только для начальной школы, но и для приготовительных классов женских гимназий, детских садов и домашнего обучения. Таким образом, монографический метод проник в детский сад и получил там широкое распространение, по нему сравнительно долго строилось обучение детей счету. В одном из научных исследований того времени (см.: К. Ф. Ле-бединцев «Развитие числовых представлений в раннем детстве».— Киев, 1923) автор, основываясь на наблюдениях за детьми, утверждает, что первые числовые представления ребенка — результат «целостного» восприятия им множеств, различения групп предметов (до 4—5). Освоение умений сосчитывать эти небольшие совокупности признавалось необязательным, а численность групп из более чем 5 элементов устанавливалась с помощью счета. Другой метод — метод изучения действий (вычислительный) — предполагал обучение детей вычислениям и пониманию смысла арифметических действий. Обучение при этом строилось по десятичным концентрам. В пределах каждого концентра изучались не отдельные числа, а счет и действия с числами. Оба метода (и монографический, и вычислительный) сыграли положительную роль в дальнейшем развитии методики, которая вобрала в себя приемы, упражнения, дидактические средства одного и другого методов. Математическое развитие дошкольников средствами «веселой» занимательной математики В конце ХГХ — начале XX вв. были широко распространены идеи обучения математике без принуждения и дидактичности, забавно, но без излишней занимательности. Математики, психологи, педагоги разрабатывали математические игры и развлечения, составляли сборники задач на смекалку, преобразование фигур, решение головоломок (В. А. Латышев, Н. Н. Аменицкий, И. П. Сахаров, А. П. Доморяд, В. Арене и др.). Авторы стремились придать четкую логику построения, необычность задачам-шуткам, арифметическим ребусам, задачам-головоломкам, задачам на деление целого на части и т. д. В ходе решения таких задач развиваются способность к правильному мышлению, логичность и последовательность мысли, острый ум и смекалка. Задачи на сообразительность, сметливость учат детей применять имеющиеся у них знания к различным случаям жизни, приучают к самоконтролю, а главное — способствуют выработке у детей умений самостоятельно искать путь решения. Ряд книг был издан специально с целью развития способностей детей, в частности «Забавная арифметика» Н. Н. Аменицкого и И. П. Сахарова. В ней предлагалось живое и забавное решение различных практических задач и вопросов, что стимулировало проявления детской самодеятельности. Широко применялись в обучении и развитии детей математические игры, в ходе которых был необходим подробный и четкий анализ игровых действий, возможность проявить смекалку в ходе поисков, самостоятельность. Значение математических игр рассматривалось авторами с позиций развития у детей интереса к изучению математики, становления умственных способностей, смекалки и сообразительности, находчивости, волевых черт характера, а также приучения детей к умственному труду. Резюме Для первого этапа становления методики развития математических представлений у детей дошкольного возраста характерно следующее. Выдвижение и обоснование идей развития у детей количественных, геометрических, пространственных и временных представлений; создание с этой целью предметно-игровой среды (М. Монтессори, Ф. Фребель) и разработка методик овладения действиями сравнения, деления на части, сосчитыва-ния, измерения и др. Активный поиск методов обучения и развития детей дошкольного и начального школьного возраста. Ж.1- Интерес к занимательной математике (прикладной) как средству развития детских интересов, приобщения детей к осуществлению умственных усилий, «думанию» и сообразительности. Щ Отсутствие теоретических и методических разработок, представляющих собой целостную систему развития математических способностей детей дошкольного возраста. Литература 1. Аменицкий Н. Н., Сахаров И. П. Забавная арифметика. — М.: Наука, 1992. 2. Игры со спичками. Задачи и развлечения. / Сост.: Улиц-кий А. Т., Улицкий Л. А. — Минск: Вуал, 1993. 3. Литературный материал с математическим содержанием. / Сост.: Михайлова 3. А., Непомнящая Р. Л. — СПб.: ЦВПО, 2005.
4. Михайлова З.А. Игровые занимательные задачи для дошкольников.— М.: Просвещение, 1989. 5. Открываю математику. / Авт.-сост. Калинина М. И. и др.— М.: Просвещение, 2005. 6. Теории и технологии математического развития детей дошкольного возраста. Хрестоматия / Сост.: 3. А. Михайлова, Р. Л. Непомнящая, М. Н. Полякова. — М.: Центр педагогического образования, 2008. 7. Упражнение с Монтессори-материалом. Дом Марии Монтессори.— Рига—Москва: Педагогический центр «Эксперимент», 1998.
1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики) В 20-е гг. XX в. резко расширилась сеть дошкольных учреждений, была создана принципиально новая система общественного дошкольного воспитания. Обсуждались проблемы отбора содержания, методов развития математических представлений у детей как основа освоения математики в школе. В эти годы Е. И. Тихее-вой, Л. В. Глаголевой, Ф. Н. Блехер и другими разрабатывались методические пособия (илл. 1, 2), программы, игры и дидактические материалы, способствующие математическому развитию дошкольников. Е. И. Тихеева в 20—30-е гг. XX в. четко определила свои позиции в области математического развития детей дошкольного возраста. Ею разработаны новые методы и приемы формирования основ математических представлений у детей; уточнено содержание обучения, созданы дидактические средства: наглядные материалы, учебные пособия, методические пособия для воспитателей. Во взглядах Е. И. Тихеевой отражены общепедагогические воззрения того
времени. Она считала центром воспитания и обучения накопление детьми восприятий, усвоение ими научных истин путем самодеятельности, поощрение пытливости их ума, создание условий, при которых ребенок самостоятельно находит то, что ему нужно, и это нужное усваивает. При выработке собственных воззрений Е. И. Тихеевой использованы результаты работ зарубежных педагогов: И. Г. Песталоцци, Ф. Фребеля, Марии Монтессори, а также практика работы воспитателей отечественных детских садов. Позиция Е. И. Тихеевой раскрыта и обоснована в предложенном ею «естественном» пути развития детей. «Естественный» путь развития понимался ею как единственный путь, ведущий к нормальному развитию числовых и в целом математических представлений у детей. Этот путь обеспечивал развитие математических представлений в соответствии с возрастными и индивидуальными возможностями, запросами каждого ребенка. С другой стороны, «естественный» путь понимался как соответствующий «данному моменту» развития ребенка: сложившейся ситуации и непосредственно в ней возникшему интересу к сравнению, измерению, счету, составлению арифметических примеров и задач, делению предмета на доли. В целом условием развития ребенка Е. И. Тихеева считала сформированность соответствующих предпосылок. Поэтому она была категорически против навязывания знаний. По ее мнению, педагог должен всегда задавать себе вопрос: готов ли ребенок к восприятию тех или иных знаний (например, о числе, цифрах и т. д.)? И только в случае готовности ребенка предлагать ему самостоятельно воспринимать то, до чего он дорос. «Естественный» путь развития ребенка в области математики протекает в самодеятельности, которая понимается как активное участие ребенка во всем, что его интересует. Для организации самодеятельности необходимо включение детей в деятельное наблюдение жизни, что поощряет пытливость их ума; создание условий развития; руководство развитием; обучение. Самодеятельность организуется с учетом индивидуальных особенностей детей. Для тех из них, кто не может «мимоходом в самодеятельности» освоить материал, необходимо создать специальные условия. Одним из основных условий освоения математики Е. И. Тихеева считала наличие необходимых пособий, позволяющих ребенку выбирать те объекты, которые его интересуют, и активно действовать. По мнению Тихеевой, наглядный материал должен быть простым и стимулировать детей к самостоятельным занятиям. Взрослый организует с детьми игры-занятия и вносит разнообразие в игру детей. Он ставит перед детьми познавательную задачу, лично участвует в игре до тех пор, пока дети не начнут самостоятельно пользоваться материалом и решать поставленные в процессе игры задачи. Основная задача педагога при руководстве игрой — вести ее так, чтобы получить наибольший эффект. Индивидуальные занятия Е. И. Тихеева считала более значимыми и ценными, нежели коллективные. Высказанные ею общие положения сводятся к следующему. • Целесообразна серьезность подхода к выбору методических приемов в силу слабой изученности закономерностей развития числовых представлений у детей. • Особое значение в ряду образовательных средств имеют игры-занятия. • Правомерен отказ от формального обучения счету, счислению вне детских запросов, возможностей, в отрыве от реальной жизни. • Играя, ребенок самостоятельно научится считать. Важно, чтобы взрослые были при этом его незаметными помощниками. • Освоение счета и счисления осуществляется «естественным» путем в условиях активности самого ребенка, проявления им самостоятельности в самостоятельной деятельности. • Ребенок извлекает числовые представления из жизни (природного окружения, быта), что развивает наблюдательность, способствует закреплению представлений и навыков в дальнейших играх-занятиях с детьми. • Полезно предлагать ребенку доступные познавательные задачи (например: как определить, поместится ли шкаф в простенок), включать их в естественную беседу. Е. И. Тихеева считала, что обучение математике должно быть игровым. Такое обучение удовлетворяет потребность детей в движениях, стремление мыслить, самостоятельно добывать и применять знания. Обучение, одной из форм организации которого являются игры-занятия, соответствует этим требованиям. Разработанные Е. И. Тихеевой игры-занятия (ранее называемые ею задачами) структурно подразделяются на части. Первая часть — это игры на познание количественных соотношений. Они предназначены для формирования у детей общих представлений о количестве, ориентировки их в длине, ширине, высоте, расположении предметов в пространстве. Игры и упражнения второй части — «Роль внешних чувств при образовании числовых представлений» — направлены на развитие барического и термического чувств, умений воспринимать количество на слух, по осязанию, например игры с однородными и разнородными по составу материалами (камыш, кирпичи, кубы, мешочки с песком или опилками). Контролирующим аппаратом являются чашечные весы. Третья часть — «Упражнения в счете до 10 и знакомство с начертанием цифр». Дети осваивают счет, отношения больше — меньше, моложе — старше, цифры. Предлагаются задачи на сравнение в возрастном отношении: «Соне 6 лет, а Володе 3 года. Кто старше? На сколько?» Четвертая часть названа «Измерения и действия над числами». Особое внимание уделяется установлению соотношений соизмеримых предметов по слову. Взрослый и ребенок называют предметы, а другие дети называют признак, по которому можно их сравнить. Например, доска и рейка сравниваются по ширине (длине, толщине); река и ручеек по глубине и т. д. Игры направлены на выработку у детей понятия о различии предметов по длине, высоте, ширине, толщине, глубине, стоимости, массе, площади (размеру). Первоначальному освоению арифметических действий способствует игра, в которой действия над числами иллюстрируются картинками. Например, кладется карточка с изображением двух девочек и одной. А ниже — карточки с цифрами 2 и 1, соответствующие знаки и результат. Обозначается результат также предметной карточкой и цифрой. Пятая часть игр-занятий — «Переход к абстрактному счислению» — направлена на систематизацию навыков в вычислениях. С этой целью Е. И. Тихеевой были разработаны специальные пособия. В последнюю часть игр-занятий — «Составление и решение задач» — включены игры и упражнения, способствующие выработке умений составлять задачу по картинкам, бытовой ситуации, отвечать на вопросы «Что сколько стоит?», «Сколько в неделе дней?» и др. В разработанных Е. И. Тихеевой играх-занятиях реализована Дидактические материалы Е. И. Тихеева делила на 3 вида: естественный материал (камни, раковины, листья), извлеченный из жизненной обстановки (игрушки, предметы), искусственный (специально разработанный для детей). Искусственный дидактический материал Тихеева считала особо значимым, так как он выдвигает упрощенные (в сравнении с обыденными житейскими) ситуации, обеспечивает повторность, концентрирует внимание детей на определенной задаче. Действуя с досками-дюймовками (разделенными на дюймы), дети осваивают счет и вычисления. Кроме того, это незаменимый материал для строительно-конструктивных игр. При сооружении построек требуется соотношение досок-дюймовок по размерам, что обеспечивает постройке прочность и красоту. Итак, Е. И. Тихеева обосновала ряд положений, характеризующих обучение счету. 1. Обучение строится на основе учета предпосылок детского развития и протекает в форме самодеятельности. Оно невозможно без богатого дидактического материала, жизненного опыта, четкого ненавязчивого руководства. 2. Игры-занятия сконструированы ею таким образом, что от освоения простых внешних особенностей предметов и отношений между ними (свойства, отношения по количеству, размер) дети переходят к познанию зависимости между величинами, числами, усваивают арифметические действия, измерения. 3. Руководство игрой, состоящее в постановке познавательных задач, обеспечивает развитие самостоятельности в игре. До 1939 г. в детских садах Ленинграда обучали счету по методике Л. В. Глаголевой и Ф. Н. Блехер. Л. В. Глаголева — исследователь, методист, практик. В ряде ее методических пособий («Преподавание арифметики лабораторным методом» (1919), «Сравнение величин предметов в нулевых группах школ» (1930), «Математика в нулевых группах» (1930)) изложены содержание, методы и приемы развития у детей первоначальных представлений о числах, величинах и их измерении, делении целого на равные части. В методике обучения счету и развития числовых представлений Л. В. Глаголева рекомендовала опираться как на монографический, так и вычислительный методы обучения. Во всех пособиях, разработанных ею, прослеживается мысль о необходимости идти при обучении от числа к числу. Это дает возможность формировать понятие числа во всех отношениях к другим числам (монографический метод). Л. В. Глаголева писала о том, что самое главное в методике — это подбор и правильное использование такого наглядного пособия, при помощи которого «восприятие данного числа получилось бы наиболее ярко». В приведенном ею примере точки, камешки, листики используются для иллюстрации любого числа. А такие предметы, как табуретка с четырьмя ножками, квадрат С четырьмя сторонами и четырьмя углами, кошка с четырьмя лапами, помогут ребенку воспринять образ числа 4, а не какого-либо другого. Л. В. Глаголева пропагандировала разнообразие методов обучения. При этом большое значение имел каждый метод: лабораторный (практические действия с использованием наглядного материала), исследовательский (поиск детьми ситуаций применения знаний, аналогичных изучаемым), иллюстративный (закрепление знаний, умений в продуктивной деятельности), наглядный (демонстрация наглядных пособий). Игра рассматривалась ею как метод обучения на занятиях. Ценность игры Л. В. Глаголева видела в развитии интересов детей, активности, находчивости и сообразительности, приучения их к наблюдательности на основе развития памяти, разумной критики и осознания своих ошибок. Л. В. Глаголева особое внимание уделяла разработке методики обучения детей сравнению величин путем сопоставления и с помощью меры и числа. Навыки в наблюдении над предметами считала основой сравнения. Предполагала, что сначала нужно учить детей видеть, рассматривать и сравнивать предметы в помещении, затем — на улице, в природе, а потом — на картинках. Рекомендовала упражнять детей в описании предмета, находящегося перед глазами, а затем — по памяти. Высказывалась против первичного использования картинок в сравнении величин, советовала первоначально пользоваться предметами. Л. В. Глаголева разработала план построения занятий с детьми по сравнению величин, выделив в нем 4 момента: образ, опыт, проверка и фиксация. Образ формировался в ходе четкого и отчетливого восприятия величин. В процессе накопления опыта дети изучали данную величину путем лабораторно-иссле-довательского метода. Сравнивали предметы между собой разнообразно: при помощи зрения и осязания вместе, затем — порознь (зрением без осязания и наоборот). Проверка полученных детьми восприятий состояла в нахождении в окружающей обстановке и назывании нескольких предметов, где бы исследуемая величина имела место. Например, ребенок замечал, что одна электрическая лампочка висит выше, чем другие. Или ребенок называл предметы, про которые можно сказать, что некоторые из них — толще, а другие — тоньше. Фиксация величины осуществлялась в какой-либо результативной детской деятельности (рисование, аппликация) и являлась контролем за освоением детьми соответствующих способов познания. Дальнейшая разработка вопросов методики развития математических представлений была предпринята педагогом и исследователем Ф. Н. Блехер (1895—1977). Основные мысли о содержании и методах обучения изложены ею в книге «Математика в детском саду и нулевой группе» (1934), которая стала первым учебным пособием и программой для высших и средних учебных заведений по математике для советского детского сада. Ею опубликовано большое количество методических пособий, «методических писем» (1930—1940 гг.), в которых периодически предлагались уточнения к программе развития у детей математических представлений, методика организации упражнений и игр, требования к индивидуальному и групповому обучению детей. В программе обучения детей счету, разработанной Ф. Н. Блехер, использовались данные зарубежных психологов, собственных наблюдений о времени и сроках восприятия ребенком разных чисел. На основе этого предлагалось: научить детей 3—4-летнего возраста различать и выделять понятия много и один, числа 1, 2, 3 на основе восприятия соответствующих совокупностей и определения их словом — числительным. В 5—6 лет — считать в пределах 10. На основе счета сравнивать числа, пользоваться порядковым счетом. В 6—7 лет — знать состав чисел, цифры, практически составлять числа из меньших групп, производить действия сложения и вычитания, освоить второй десяток, научиться решать простые арифметические задачи, близкие по содержанию жизненному опыту детей. Согласно содержанию обучения, разработанному Ф. Н. Бле-хер, дети осваивали пространственные и временные отношения, геометрические фигуры, пространственные направления, приемы сравнения предметов, способы оценки временной длительности. Для реализации поставленных задач Ф. Н. Блехер рекомендовала использовать два пути: развивать у детей количественные представления в других видах деятельности и проводить специальные игры и занятия. По ее мнению, дети должны активно участвовать в практических жизненных ситуациях (например, выяснять, сколько кроваток потребуется только что купленным куклам; определять самостоятельно, путем подсчета по календарю, количество дней до праздника); выполнять поручения взрослых, требующие освоения математических представлений; в играх, на занятиях упражняться в образовании групп предметов; сравнивать; отсчитывать; действуя с наглядным материалом, составлять числа из меньших чисел; находить цифры, показывающие то или иное количество и т. д. Ф. Н. Блехер считала, что развивать у детей количественные представления следует как на основе счета, так и в процессе восприятия групп предметов. Разработанная ею методика обучения во многом отражала идеи монографического метода: идти в обучении от числа к числу, строить обучение на целостном восприятии групп предметов, запоминать с детьми случаи состава чисел (в качестве подготовки к простейшим арифметическим действиям), использовать числовые фигуры и т. д. Ф. Н. Блехер разработала не только содержание обучения детей, но и методы, преимущественно игровые. Созданная ею система дидактических игр по сей день используется в дошкольных учреждениях с целью развития математических представлений и умственных способностей детей. Как считала Ф. Н. Блехер, дидактические игры, хотя и являются одним из важных приемов обучения, все же не могут заменить другие его формы и методы. На основе анализа теоретических и методических публикаций Ф. Н. Блехер можно заключить, что ею создана первая в нашей стране дидактическая система обучения математике в условиях дошкольных учреждений. 1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)
Вопросы развития количественных представлений у детей дошкольного возраста разрабатывались А. М. Леушиной (1898—1982) с 50-х гг. XX в. Благодаря ее работам методика развития у детей математических представлений получила теоретическое, научное и психолого-педагогическое обоснования, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в детском саду. Это стало возможным благодаря глубокому и тщательному анализу различных точек зрения, подходов и концепций формирования числовых представлений; учету достижений отечественной и зарубежной науки, практики общественного воспитания и обучения дошкольников в нашей стране. Методическая концепция того времени основывалась на работах Е. И. Тихеевой, Л. В. Глаголевой, Ф. Н. Блехер. Суть ее заключалась в следующем: усвоение ребенком математических представлений осуществляется в процессе жизни и разнообразной деятельности. Играя, работая, дети сами черпают необходимые им для развития знания из окружающего мира. Педагог должен лишь создавать условия, пользоваться каждым удобным случаем для совершенствования количественных представлений у детей. При таком подходе основное внимание уделялось разработке дидактического материала, играм и упражнениям как основному методу и средству работы с детьми. А. М. Леушина разработала основы дидактической системы формирования элементарных математических представлений, создав программу, содержание, методы и приемы работы с детьми от 3 до 6 лет. Теоретико-методическая концепция, разработанная А. М. Леушиной, заключается в следующем: от нерасчлененного восприятия множества предметов детей необходимо переводить к выявлению отдельных составляющих этого множества элементов путем попарного сопоставления их, что представляет дочисловой период обучения (усвоение отношений столько же, поровну, больше, меньше и др.). Обучение счету основывается на освоении детьми действий с множествами и базируется на сравнении двух множеств. Дети знакомятся с числом как характеристикой численности конкретной предметной группы (множества) в сопоставлении ее с другой. В дальнейшем сравнении чисел (на наглядной основе) ребенком усваиваются последовательность и отношения между ними, что приводит к сознательному освоению счета и использованию его в вычислениях, выполнению действий при решении простых арифметических задач. Элементарное представление о числе формируется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количества, независимо от других признаков (качественных особенностей, расположения в пространстве). На этой основе строится освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел. В методике первоначального ознакомления детей с числами, счетом, арифметическими действиями, разработанной А. М. Леу-шиной, использованы положительные стороны метода изучения чисел (воспроизведение групп предметов, применение числовых фигур и счетных карточек, знакомство с составом чисел) и метода изучения действий (число как результат счета; образование чисел на основе сравнения двух совокупностей и практического установления между ними взаимнооднозначного соответствия; увеличение или уменьшение одного из них на единицу; освоение действий сложения и вычитания на основе сформированных представлений о числах натурального ряда и навыков счетной деятельности). Согласно методике, предложенной А. М.Леуши-ной, в процессе развития количественных представлений у детей следует особое внимание уделять накоплению ими чувственного опыта, созданию сенсорной основы счетной деятельности, последовательному обобщению детских представлений. Этим требованиям отвечает предложенная ею система практических упражнений с демонстрационным и раздаточным материалом. Занятия рассматривались А. М. Леушиной в качестве основной, ведущей формы развития количественных представлений в детском саду. С их помощью возможно освоение детьми знаний повышенной трудности, достаточно обобщенных, лежащих в «зоне ближайшего развития». Самостоятельно приобрести их ребенок не в состоянии. «Попутное» усвоение их в игре или труде малоэффективно, т. к. главными в них являются цели, способы действия и результаты самой деятельности, а не формирование математических представлений. Полноценное математическое развитие обеспечивает лишь организованная, целенаправленная деятельность на занятии, в ходе которой взрослый продуманно ставит перед детьми познавательные задачи, показывает адекватные пути и способы их решения. В процессе обучения на занятиях необходимо реализовывать основные программные требования, математические представления формировать в определенной системе. Представления и соответствующие им способы действия, сформированные на занятиях, должны обслуживать потребности разных видов детской деятельности, повышая ее продуктивность и результативность. Вопрос о методах и средствах обучения должен решаться на основе и в тесной связи с содержанием и формами организации процесса развития количественных представлений у детей в детском саду. В содержании обучения основное внимание необходимо уделять формированию счетной и вычислительной деятельности, которые являются основой математического развития ребенка. Разработанная А. М. Леушиной концепция формирования количественных представлений в 60—70-е гг. была существенно дополнена за счет научно-теоретической и методической разработки проблемы развития пространственно-временных представлений у дошкольников. Результаты научных исследований А. М. Леушиной отражены в ее докторской диссертации «Подготовка детей к усвоению арифметического материала в школе» (1956), многочисленных публикациях, учебных пособиях, таких как «Обучение счету в детском саду» (М., 1959, 1961), «Формирование элементарных математических представлений у детей дошкольного возраста» (М., 1974) и др. Обложку одного из пособий вы видите на илл. 3. Воспитатели детских садов широко использовали разработанные А. М. Леушиной конспекты занятий: «Занятия по счету в дет ском саду» (М., 1963, 1965) и «Наглядные дидактические материалы» (1965). В дальнейшем под руководством А. М. Леушиной (по результатам диссертационных исследований) были разработаны содержание и методы формирования у детей пространственных и временных представлений, обучения измерению объема, массы; вопросы умственного и всестороннего развития детей в процессе освоения ими элементарных математических знаний Резюме по второму и третьему этапам становления методики г В 20—50-е гг. XX в. особых различий в подходах к отбору содержания, методов обучения и развития разными педагогами не наблюдалось (Е. И. Тихеева, Л. В. Глаголева, Ф. Н. Блехер). Предлагалось развивать способность ориентироваться в пространстве и времени, умения различать формы и величины, числа и действия над ними, представления о мерах и делении целого на части. Не нашли, что искали? Воспользуйтесь поиском:
|