ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Теория сцепления арматуры с бетономПод сцеплением арматуры с бетоном понимают связь, развивающуюся на поверхностях контакта между этими двумя материалами, обеспечивающую их совместную работу. В железобетонном элементе сцепление выполняет функции анкеровки арматуры (на длине заделки, в стыках в нахлестку) и вовлечение в работу бетона, а поэтому будет влиять на анкеровку арматуры на свободных опорах балок, анкеровку арматуры в местах теоретического обрыва стержней, длину стыков арматуры внахлестку, прочность заделки анкеров и ширину раскрытия трещин. Сцепление порождается действием ряда химических, физических и механических факторов: 1. Склеиванием (адгезией) цементного геля с арматурой. 2. Трением, вызванным радиальным давлением от усадки бетона. 3. Зацеплением за бетон микронеровностей поверхности арматуры и выступов профиля и соответствующим сопротивлением бетонных консолей смятию, срезу и действию главных растягивающих напряжений. 4. Сопротивлением вывинчиванию некоторых видов витых и крученых арматур. 5. Заклиниванием арматуры в бетоне с появлением распора и соответствующих сил трения. 6. Трением, вызванным поперечным обжатием бетона внешней нагрузкой /3;4;7/. Такие факторы сцепления как силы трения и склеивание зависят от площади контакта арматуры с бетоном. Поэтому за основу оценки влияния параметров периодического профиля стержневой арматуры на сцепление с бетоном принимается отношение высоты поперечных выступов к их шагу и величина относительной площади смятия (критерий Рэма - ), равная отношению площади смятия к площади контакта арматуры с бетоном /7, 12, 13/. где - площадь проекции боковой поверхности поперечных ребер на плоскость, перпендикулярную оси арматурного стержня; - номинальный диаметр стержня; - шаг поперечных выступов. Целью разработки теории сцепления арматуры с бетоном является создание расчетного аппарата для определения важнейших силовых и геометрических величин, определяющих напряженное и деформированное состояние участка активного сцепления (участка на котором осуществляется передача усилий с арматуры на бетон). Напряженно-деформированное состояние элемента на участке активного сцепления достаточно сложное: происходит депланация поперечных сечений, арматура смещается относительно бетона, развиваются пластические деформации бетона, возникают трещины вокруг образца. Функцию сцепления, предполагающую вовлечение в работу бетона, удобно изучать на так называемом «растянутом образце», имеющем форму короткой бетонной призмы с забетонированным на ее оси стержнем, растянутым силами Р, приложенными к его свободным концам. Вторичные трещины появляются сначала у торцов образца и имеют вид боковой поверхности усеченного конуса. В дальнейшем они распространяются в глубь образца, принимая более плоскую форму. Развитие вторичных трещин у торцов и в пределах крайних третей образца приводит к выравниванию эпюры нормальных напряжений в арматуре и к снижению величин напряжений сцепления, т. е. к выключению бетона из совместной работы с арматурой. Под действием распорных сил возникают поперечные деформации образца, и он может расколоться вдоль арматуры /4;7;8;10/. Построение теории сцепления арматуры с бетоном. На сцепление арматуры с бетоном влияет огромное количество факторов самой разнообразной природы (напряженное состояние элемента, геометрические характеристики элемента, характеристики бетона, характеристики арматуры). Без правильного учета важнейших из них невозможно построить сколь-нибудь достоверную теорию. Первый и наиболее значительный вклад в отечественную теорию сцепления арматуры с бетоном внес М.М. Холмянский /7;8/. В его технической теории сцепления было предложено за основной закон сцепления принимать зависимость напряжений сцепления от взаимных смещений арматуры, которая определяется на основании опытных данных. Допущение о равномерном распределении напряжений и удлинений в поперечном сечении бетона, о малости и упругости последних, а также замена истинного смещения арматуры относительно бетона условными приводят к тому, что соответствующие теории не дают в общем случае правильного представления о деформациях бетона на участке активного сцепления. Наличие сосредоточенного поперечного давления и прежде всего наличие развивающихся вдоль арматуры трещин с шириной раскрытия более 0,2 – 0,3 мм можно отнести к ограничениям в применении данного закона сцепления. Однако, знание одного лишь дифференциального закона сцепления недостаточно для построения теории сцепления. Для того чтобы судить о деформациях бетона, не вводя допущения об упругости и справедливости гипотезы плоских сечений, Оатул А.А. предлагает использование дополнительных физических зависимостей, устанавливаемыми опытным путем: Попытка построить теорию, свободную от этих недостатков, принадлежит Н.И. Карпенко /1;2/. Им применена модель, позволяющая прямым образом учитывать наличие контактных трещин. Существенно важно, что в его работе впервые сделана попытка практически полного моделирования контакта. Условные взаимные смещения в модели рассматриваются Н.И. Карпенко как перемещения концов консольных элементов, на которые трещины разделяют бетон контактного слоя. Его модель позволяет с единых позиций рассмотреть вопросы определения осевых смещений арматуры относительно бетона, раскалывания бетона арматурой, а также характер искривления (депланации) бетона вокруг арматурного стержня, которые обычно изучались разрозненно. В модель сцепления входят: учет влияния местного смятия бетона под выступами арматуры (в зависимости от шага профилировки и высоты поперечных выступов) на смещение арматуры относительно бетона; формулировка условий, определяющих образование и развитие различного рода контактных трещин конических и радиальных; моделирование процесса деформирования и разрушения бетона конических оболочек с учетом перехода на ниспадающую ветвь; учет влияния деформаций бетона в зоне контактных трещин на смещение арматуры относительно границы указанной зоны. Для изучения влияния геометрических размеров и конструкции профиля арматуры на ее сцепление с бетоном нами были проведены испытания на вытягивание арматурных стержней из бетонных кубов или призм согласно рекомендациям РИЛЕМ/ЕКБ/ФИП /5/. По силовой схеме испытания представляют из себя «вытягивание арматуры из бетона» Работа выполнялась на основе сравнительных испытаний стержневой арматурной стали диаметром 25 мм класса А-500 с периодическими профилями по ГОСТ 5781-82 (стандартный эталон), по DIN 488 (гармонизированный c серповидным профилем) по ТУ 14-2-949-91, по BS 4449:1988- стандарту Великобритании и по ASTM А-706- стандарт США (табл. 1, рис. 7). Таблица 1
В качестве базового образца принимался бетонный куб с ребром 300 мм центрально армированный. При этом в одной части заделки (20 см) арматура находилась в контакте с бетоном, а в другой части (10 см) сцепление искусственно исключалось (стержень заключается в изолирующий материал). Испытания проводились с помощью 25-ти тонного домкрата и ручной насосной станции. Стержень проводился сквозь отверстие в домкрате и заклинивался с обратной стороны цанговым зажимом (рис.8). Опирание образца - насухо, через стальную опорную пластину с центральным отверстием диаметром 175 мм. Это обеспечивает практически полное свободное проявление депланации нижних горизонтальных сечений бетона для всех испытываемых образцов, т.е. ставит их в равные условия по этому фактору. Для обеспечения надежного крепления арматуры в захватах, со стороны загружаемого конца предусматривался выпуск арматуры из бетона - 600 мм. Смещения арматуры измерялись при помощи индикатора часового типа с ценой деления - 0,01 мм, жестко закрепленном на струбцине, устанавливаемой на верхней части бетонного образца и соединяемой с наружными слоями бетона, практически не деформируемыми при нагружении из-за наибольшего их удаления от стержня. Рис.1. Испытательная установка 1.Индикатор ИЧ-10; 2.Струбцина; 3.Бетонная призма; 4.Арматурный стержень; 5.Изолирующая прокладка; 6.Стальная опорная пластина; 7.Плита для опирания домкрата; 8.Домкрат; 9.Цанговый зажим; 10.Манометр; 11.Насосная станция. В результате испытаний выявились некоторые характерные особенности взаимодействия арматуры с бетоном. Так полное нарушение сцепления в случае с арматурой по ГОСТ 5781-82, с наибольшим отношением высоты поперечных выступов к их шагу, произошло в результате среза бетонных шпонок, заключенных между поперечными выступами арматуры. В случаях с арматурой других профилей, нарушение сцепления сопровождалось раздроблением окружающего бетона.
Не нашли, что искали? Воспользуйтесь поиском:
|