Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






ДЕФОРМАЦИИ КРУЧЕНИЯ.




Рис. 34. Крутильный маятник.

Рассмотрим стержень в виде прямого кругового цилиндра радиуса r, верхнее основание которого закреплено, а в некотором произвольном сечении, расположенном на расстоянии L от закрепленного, приложена пара касательных сил Ft, момент которых по величине равен M = [FxL] (5.12)

и направлен вдоль оси цилиндра. Под действием вращающего момента все сечения цилиндра поворачиваются на угол j тем больший, чем дальше эти сечения расположены от закрепленного основания. При упругих деформациях угол кручения пропорционален вращающему моменту: φ = (1/D)M. (5.13) Деформации кручения являются частным случаем сдвиговых деформаций, поскольку любое нижнее сечение испытывает сдвиг относительно верхнего. Поэтому модуль кручения можно выразить через модуль сдвига. Детальный расчет приводит к следующему выражению: D = G(πγ4)/(2L). (5.14).

Закон Гука может быть обобщен и на случай более сложных деформаций. В технике часто применяются спиралеобразные пружины.

 

ИМПУЛЬС.

Совокуп­ность материальных точек (тел), рассматриваемых как единое целое, называется механической системой. Силы взаимодействия между материальными точками механичес­кой системы называются — внутренними. Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними. Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной). Если мы имеем механическую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и проти­воположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела. Импульс тела – векторная величина. Единицей измерения импульса в СИ является (кг·м/с). Физическая величина, равная произведению силы на время ее действия, называется импульсом силы. Второй закон Ньютона может быть сформулирован следующим образом: изменение импульса тела (количества движения) равно импульсу силы. FΔt = ΔP. (5.15)

 

 

 

Рис. 35. Закон сохранения импульса.

Векторное равенство в проекциях на координатные оси:

FxΔt = ΔPx. FyΔt = ΔPy. FzΔt = ΔPz. (5.16).

Рассмотрим в качестве примера одномерное движение, т.е. движение тела по одной из координатных осей (например, оси OY). Пусть тело свободно падает с начальной скоростью v0 под действием силы тяжести; время падения равно t. Направим ось OY вертикально вниз. Импульс силы тяжести Ft = mg за время t равен mgt. Этот импульс равен изменению импульса тела

.Ftt = mgt = ΔP = m(v – v0), (5.17).

откуда v = v0 + gt. (5.18).

D:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Fwd_h.gifD:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\Bwd_h.gif При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Закон сохранения импульсаявляется следствием из второго и третьего законов Ньютона. Силы взаимодействия между двумя телами обозначим через F1 и F2. По третьему закону Ньютона F2 = - F1. Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: F2t = - F1t. Применим к этим телам второй закон Ньютона: F1t = m1v11 – m1v1., F2t = m2v21 – m2v2. (5.19).

Где m1v1. и m2v2. - импульсы тел в начальный момент времени, m1v11 и m2v21 – импульсы тел в конце взаимодействия. Из этих соотношений следует:

m1v1 + m2v2 = m1v11 + m2v21. (5.20).

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился p = Spi = const. dp/dt=0; (5.21).

Этот закон говорит о том, что обмен импульсами внутри системы не приводит к изменению суммарного импульса всей системы, если не действуют внешние силы.

Закон сохранения импульса справедлив не только в классической физике, он выпол­няется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер,

т. е. закон сохранения импуль­са — фундаментальный закон природы.

Закон сохранения импульса является следствием определенного свойства симмет­рии пространства — его однородности. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

Отметим, что, импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю.

В механике Галилея—Ньютона из-за независимости массы от скорости импульс системы может быть выражен через скорость ее центра масс. Центром масс (или центром инерции) системы материальных точек называется точка С, положение которой характеризует распределение массы этой системы. Ее ра­диус-вектор равен rc = ∑(miri)/m. где mi и ri — соответственно масса и радиус-вектор i материальной точки; n — число материальных точек в системе; m = ∑(mi) – масса системы. Скорость центра масс vc = drc/dt = (∑mivi)/m. Учитывая, что pi = mi v i, a (∑pi. есть импульс р системы, можно написать p = mvc т. е. импульс системы равен произведению массы системы на скорость ее центра масс.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных