ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Вероятностный подход.Рассмотрим в качестве примера опыт, связанный с бросанием правильной игральной - кости, имеющей 6 граней (наиболее распространенным является случай шестигранной кости: N = 6). Результаты данного опыта могут быть следующие: выпадение грани с одним из следующих знаков: 1,2,...N.
Введем в рассмотрение численную величину, измеряющую неопределенность - энтропию (обозначим ее H ). Величины N н Н связаны между собой некоторой функциональной зависимостью: а сама функция H является возрастающей, неотрицательной и определенной (в рассматриваемом нами примере) для N = 1, 2,... 6. Рассмотрим процедуру бросания кости более подробно: 1) готовимся бросить кость; исход опыта неизвестен, т.е. имеется некоторая неопределенность; обозначим ее H1; 2) кость брошена; информация об исходе данного опыта получена; обозначим количество этой информации через I; 3) обозначим неопределенность данного опыта после его осуществления через H2. За количество информации, которое получено в ходе осуществления опыта, примем разность неопределенностей «до» и «после» опыта:
Очевидно, что в случае, когда получен конкретный результат, имевшаяся неопределенность снята (H1 = 0), и, таким образом, количество полученной информации совпадает с первоначальной энтропией. Иначе говоря, неопределенность, заключенная в опыте, совпадает с информацией об исходе этого опыта. Заметим, что значение H2 могло быть и не равным нулю, например, в случае, когда в ходе опыта следующей выпала грань со значением, большим «3». Следующим важным моментом является определение вида функции в формуле (1.1). Если варьировать число граней N и число бросаний кости (обозначим эту величину через М), общее число исходов (векторов длины М, состоящих из знаков 1, 2,..., N) будет равно nb степени М:
Так, в случае двух бросаний кости с шестью гранями имеем: X - 62 = 36. Фактически каждый исход X есть некоторая пара (Х1, Х2), где X1 и Х2- соответственно исходы первого и второго бросаний (общее число таких пар - X).
Ситуацию с бросанием М раз кости можно рассматривать как некую сложную - систему, состоящую из независимых друг от друга подсистем. - «однократных бросаний кости». Энтропия такой системы в М раз больше, чем энтропия одной системы (так называемый «принцип аддитивности энтропии»): Прологарифмируем левую и правую части формулы (1.3) Обозначив через X положительную константу, получим: f(X) Подставляем полученное для М значение в формулу (1.4): Это - формула Хартли. Важным при введение какой-либо величины является вопрос о том, что принимать за единицу ее измерения. Очевидно, Н будет равно единице при N = 2. Иначе говоря, в качестве единицы принимается количество информации, связанное с проведением опыта, состоящего в получении одного из двух равновероятных исходов (примером такого опыта может служить бросание монеты при котором возможны два исхода: «орел», «решка»). Такая единица количества информации называется «бит». Все N исходов рассмотренного выше опыта являются равновероятными и поэтому можно считать, что на «долю» каждого исхода приходится одна левая часть общей неопределенности опыта.
Таким образом: Та же формула (1.6) принимается за меру энтропии в случае, когда вероятности различных исходов опыта неравновероятны (т.е. Pi могут быть различны). Формула (1.6) называется формулой Шеннона. В качестве примера определим количество информации, связанное с появлением каждого символа в сообщениях, записанных на русском языке. Будем считать, что русский алфавит состоит из 33 букв и знака «пробел» для разделения слов. По формуле (1.5) Однако, в словах русского языка (равно как и в словах других языков) различные буквы встречаются неодинаково часто. Не нашли, что искали? Воспользуйтесь поиском:
|