Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Замена переменных в неопределенном интеграле (метод подстановки).




Только что рассмотренный прием подведения под знак дифференциала является частным случаем метода замены переменных и используется, в основном, тогда, когда в подынтегральном выражении легко выделить дифференциал некоторой функции и «узнать» в получившемся после выделения дифференциала выражении табличный интеграл относительно этой функции. Если же в уме подобные преобразования произвести трудно, используют замену переменных. Суть метода в следующем.

Пусть требуется вычислить интеграл , но непосредственно подобрать первообразную для f (x) не удается, хотя известно, что она существует. Заменим переменную интегрирования, положив х = j(t), где j(t) непрерывная функция, имеющая обратную t = j–1(x), тогда = j¢(t) dt и имеет место равенство

= ,

где g (t) = f (j(t))j¢(t).

Если для функции g (t) первообразную найти нетрудно и она равна G (t), то согласно свойству 6, имеем

= .

Рассмотрим примеры.

Пример3.

.

При интегрировании методом замены переменных иногда удобнее подбирать подстановку в виде t = j(x), но при этом необходимо, чтобы в заданном подынтегральном выражении f (x) dx можно было легко получить множитель вида j¢(x) dx, дающий дифференциал новой переменной t.

Пример4.

а) .

Заметим, что этот интеграл можно вычислить и подведением под знак дифференциала, если учесть, что .

б)

.

Выбор правильной подстановки зависит от навыка и интуиции вычислителя. Если выбор окажется не совсем удачным, замену переменных можно применять несколько раз, пока не будет получен результат. В некоторых часто встречающихся ситуациях можно дать определенные рекомендации (здесь и в дальнейшем буквой R будем обозначать рациональную функцию соответствующих аргументов):

– используется подстановка t = ex

– используется подстановка t = log ax.

В дальнейшем мы рассмотрим еще некоторые классы интегралов, в которых используются вполне конкретные подстановки.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных