ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Лекции 5. Основные теоремы дифференциального исчисления. Приложения производных к исследованию функцииСодержание лекции: теоремы о дифференцируемых функциях: Ролля, Лагранжа. Формула Тейлора. Правило Лопиталя. Монотонность функции. Точки экстремума. Наибольшее и наименьшее значения функции на отрезке. Выпуклость, вогнутость графика функции, точки перегиба.
1. Теоремы о дифференцируемых функциях. Правило Лопиталя Теорема 5.1(Ролля) Пусть функция f (x) определена и непрерывна на [ a; b ], дифференцируема, по крайней мере, на (а; b), а на концах отрезка принимает равные значения: f (a) = f (b). Тогда существует хотя бы одна точка с Î(a; b) такая, что f ¢(c) = 0. Сравните эту теорему с I теоремой Больцано-Коши (теорема 3.5). Там речь шла о существовании нуля функции, а здесь – о нуле производной. Доказательство. 1) Если f (x) = const на [ a; b ], то условие f (a) = f (b) выполняется с очевидностью. Но и f ¢(x) = (const)¢ = 0 также выполняется, причем " х Î[ a; b ]. 2) Пусть f (x) ¹ const на [ a; b ]. Так как функция f (x) непрерывна на отрезке, то, согласно теореме Вейерштрасса (теорема 3.7), она достигает на нем наименьшего т и наибольшего М значений. Очевидно М >т. Причем эти значения не могут достигаться на концах отрезка, т.к. f (a) = f (b). Значит, хотя бы одно из них достигается во внутренней точке с Î[ a; b ].Для определенности положим f (c) = т. Так как функция f (x) дифференцируема в интервале(a; b), то в точке с существует конечная производная:
Так как f (c) = т – наименьшее значение функции, то f (c + D x) – f (c)³0 для всех х ¹ с и для любого D x. Значит,
Поскольку функция в точке х = с имеет конечную производную, то f ¢(c) = f ¢(c +0) = f ¢(c –0), а это возможно лишь при условии f ¢(c) = f ¢(c +0) = f ¢(c –0) = 0. ЧТД.
Теорема 5.2.(Лагранжа) Пусть функция f (x) определена и непрерывна на [ a; b ] и дифференцируема, по крайней мере, на (а; b). Тогда существует хотя бы одна точка с Î(a; b) такая, что
Доказательство. Рассмотрим вспомогательную функцию j(х) = f (х) – f (a) – Эта функция удовлетворяет всем условиям теоремы Ролля. Действительно, j(х) определена и непрерывна на [ a; b ]. На (а; b) эта функция дифференцируема, так как составлена из дифференцируемых функций f (x) и линейной функции j(а) = j(b) = 0. Значит, согласно теореме Ролля, найдется хотя бы одна точка с Î(a; b), такая, что j¢(с) = 0. Но тогда j ¢(с) = f ¢(с) – Рассмотрим геометрический смысл этой теоремы. Заметим сначала, что
Но f ¢(с) = tga – угловому коэффициенту касательной, проведенной к графику функции в точке (с, f (c)).
Теорема 5.3 Если функция . Здесь слагаемое Формула Тейлора позволяет представить приближенно (аппроксимировать) произвольную функцию
Многочлен в правой части этого равенства называют многочленом Тейлора. Остаточный член При
где
Теорема 5.4.(Правило Лопиталя) Пусть функции f (x) и g (x) определены и дифференцируемы в окрестности точки х 0, причем g ¢(x 0) ¹ 0. Если Теорема 5.4 позволяет вычисление предела отношения двух функций, в случае неопределенности Пример: 1) 2) Не нашли, что искали? Воспользуйтесь поиском:
|