ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Уравнение движения вращающегося телаУравнение движения материальной точки связывает, как мы знаем, скорость изменения ее импульса с действующей на нее силой. Поступательное движение твердого тела мало чем отличается от движения материальной точки и уравнение этого движения заключается в такой же связи между полным импульсом тела
Для вращательного движения аналогичную роль играет уравнение, связывающее скорость изменения момента импульса тела с моментом действующих на него сил. Выясним, как выглядит эта связь, причем снова ограничимся простейшим случаем вращения тела вокруг определенной закрепленной оси (ось Z). Момент импульса тела относительно оси вращения мы уже определили. Обратимся теперь к действующим на тело силам. Ясно, что силы, направленные параллельно оси вращения, могут только сдвинуть тело вдоль этой оси, но не могут произвести вращения тела. Мы можем поэтому не принимать во внимание таких сил и рассматривать только силы, лежащие в плоскости, перпендикулярной оси вращения. Момент Nz такой силы
где
где Согласно взаимосвязи между скоростью изменения момента импульса и моментом действующих сил можно написать теперь равенство
Это и есть уравнение движения вращающегося тела. Производную Если на тело действует несколько сил, то под Nz в написанном уравнении следует, конечно, понимать сумму их моментов. При этом надо помнить о векторном происхождении величины Nz и приписывать разные знаки моментам сил, стремящимся повернуть тело в противоположных направлениях вокруг оси. Положительный знак имеют моменты сил, под действием которых тело поворачивается в направлении, отвечающем условленному направлению отсчета угла j поворота тела вокруг оси (j есть тот угол, производная которого по времени есть угловая скорость вращения тела: Отметим также, что в твердом теле можно, не изменяя свойств движения, любым образом смещать точку приложения силы вдоль направления ее действия. Очевидно, что такой перенос не изменит плеча силы, а потому не изменится и ее момент. Условие равновесия тела, могущего вращаться вокруг некоторой оси, заключается, очевидно, в равенстве нулю суммы моментов действующих на него сил. Это — так называемый закон моментов. Его частным случаем является известное правило рычага, устанавливающее условие равновесия стержня, могущего вращаться вокруг одной из своих точек. Существует простая связь между моментом действующей на тело силы и работой, производимой ею при вращении тела. Работа, производимая силой
Мы видим, что момент силы относительно оси совпадает с производимой ею работой, отнесенной к единичному угловому перемещению. С другой стороны, произведенная над телом работа равна убыли его потенциальной энергии. Поэтому можно написать, что
Таким образом, момент силы равен взятой с обратным знаком производной от потенциальной энергии по углу поворота тела вокруг данной оси. Обратим внимание на аналогию между этим соотношением и формулой Легко убедиться в том, что уравнение движения вращающегося тела находится, как и должно было быть, в согласии с законом сохранения энергии. Полная энергия тела есть
а ее сохранение выражается равенством
По правилу дифференцирования функции от функции имеем
Производная же
Если применить соотношение Не нашли, что искали? Воспользуйтесь поиском:
|