![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Занятие 3. Элементарные методы построения графиков функций.Следующие функции называются основными элементарными. 1. Степенная функция: у = xa, 2. Показательная функция: у = ах, а > 0, a ≠ 1. 3. Логарифмическая функция: y = log ax, a > 0, a ≠ 1. 4. Тригонометрические функции: y =sin x, y =cos x, у = tg x, y = ctg x. 5. Обратные тригонометрические функции: y = arcsin x, y = arccos x, y = arctg x, y = arcctg x. Элементарной называется всякая функция, которая может быть получена из конечного числа основных элементарных функций с помощью арифметических операций и операции композиции. Графиком функции y = f (x)называется множество где R 2 − множество всех точек плоскости. На плоскости с фиксированной декартовой прямоугольной системой координат Оху график функции представляется множеством точек М (х, y), координаты которых удовлетворяют соотношению y = f (x) (графическое изображение функции). При построении графиков часто используются следующие простые геометрические рассуждения. Если Г − график функции y = f (x),то: 1) график функции y 1 = − f (x)есть зеркальное отображение Г относительно оси Ох; 2) график функции y 2 = f (− x)− зеркальное отображение Г относительно оси Оу; 3) график функции y 3 = f (x − a) − смещение Г вдоль оси Ох на величину а; 4) график функции y 4 = b + f (x) − смещение Г вдоль оси Оу на величину b; 5) график функции y 5 = f (ax), а > 0, a ≠ 1, − сжатие в а раз (при а > 1) или растяжение в 1/ а раз (при а < 1) Г вдоль оси Ох; 6) график функции y 6 = bf (x), b > 0, b ≠ 1 − растяжение в b раз (при b > 1)или сжатие в 1/ b раз (при b < 1) Г вдоль оси Оу. В некоторых случаях при построении графика функции целесообразно разбить ее область определения на несколько неперссекающихся промежутков и последовательно строить график на каждом из них. Подробнее см. МП-4. Задачи: Построить графики следующих элементарных функций: 1.176. у = у 0 + а (х − х 0)2, если: а) a = 1, x 0 = 0, y 0 = −1. 1.177. 1.178. y = a sin(kx + α), если: а) а = 1, k = 2, α = π/3. 1.179. y = a tg(kx + α), если: а) а = 3, k = 1/3, α = π/4. 1.180. y = p arcsin(x + q), если: а) р = 4, q = −1. 1.181. y = p arctg(x + q), если: а) р = −3, q = 5/2. 1.182. у = akx + b,если: а) а = 2, k = − 1, b = 1. 1.183. y = log a (kx + b), если: а) а = 10, k = 10, b = −1. 1.185. y = x 2 + x − | x |. 1.190. 1.197. y = log1/2| x − 3|. 1.205. Домашнее задание: 1.176. у = у 0 + а (х − х 0)2, если: б) a = 2, x 0 = 1, y 0 = 0. 1.177. 1.178. y = a sin(kx + α), если: б) а = −2, k = 1/2, α = −π/3. 1.179. y = a tg(kx + α), если: б) а = −1/2, k = 2, α = 3π/2. 1.180. y = p arcsin(x + q), если: а) р = −2/3, q = 1/2. 1.181. y = p arctg(x + q), если: а) р = 2/5, q = −6. 1.182. у = akx + b,если: а) а = 1/2, k = 2, b = −2. 1.183. y = log a (kx + b), если: а) а = 1/10, k = 1/2, b = 2. 1.186. y = x 2 − 6| x| + 9. 1.187. y = |6 x 2 + x| − 1. 1.198. y = |log2(x + 1)|. 1.202. y = |arctg(x − 1)|, 1.204. Не нашли, что искали? Воспользуйтесь поиском:
|