ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Представление синусоидальных величин в комплексной плоскостиГеометрические операции с векторами можно заменить алгебраическими операциями с комплексными числами, что существенно повышает точность получаемых результатов. Каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в: показательной тригонометрической алгебраической Например, ЭДС Фазовый угол В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:
Комплексное число
Параметр Параметр Вообще говоря, умножение вектора на оператор поворота Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака “ j” произведения комплекса амплитуды Переход от одной формы записи синусоидальной величины к другой осуществляется с помощью формулы Эйлера:
Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме: - то для записи ее в показательной форме, необходимо найти начальную фазу Тогда мгновенное значение напряжения: где При записи выражения для определенности было принято, что
а при
или
Если задано мгновенное значение тока в виде Следует указать, что при сложении и вычитании комплексов следует пользоваться алгебраической формой их записи, а при умножении и делении удобна показательная форма. Итак, применение комплексных чисел позволяет перейти от геометрических операций над векторами к алгебраическим над комплексами. Так при определении комплексной амплитуды результирующего тока
Не нашли, что искали? Воспользуйтесь поиском:
|