![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Матричная запись метода узловых напряжений
На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:
где Матрицы Z и Y взаимно обратны. Умножив обе части равенства (14) на узловую матрицу А и учитывая первый закон Кирхгофа, согласно которому
получим:
Выражение (16) перепишем, как:
Принимая потенциал узла, для которого отсутствует строка в матрице А, равным нулю, определим напряжения на зажимах ветвей:
Тогда получаем матричное уравнение вида:
Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить
то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:
где В развернутом виде соотношение (22) можно записать, как:
то есть получили известный из метода узловых потенциалов результат. Рассмотрим составление узловых уравнений на примере схемы по рис. 4.
Данная схема имеет 3 узла (m=3) и 5 ветвей (n=5). Граф схемы с выбранной ориентацией ветвей представлен на рис. 5. Узловая матрица (примем
Диагональная матрица проводимостей ветвей:
где Матрица узловых проводимостей
Матрицы токов и ЭДС источников
..Следовательно, матрица узловых токов будет иметь вид:
.Таким образом, окончательно получаем: где Анализ результатов показывает, что полученные уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу узловых потенциалов. 16) Теорема наложения и метод расчёта, основанный на ней Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными. Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности. Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается соотношением
Здесь Входные и взаимные проводимости можно определить экспериментально или аналитически, используя их указанную смысловую трактовку, при этом Аналогично определяются коэффициенты передачи тока Доказательство принципа наложения можно осуществить на основе метода контурных токов. Если решить систему уравнений, составленных по методу контурных токов, относительно любого контурного тока, например
где Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого В качестве примера использования метода наложения определим ток во второй ветви схемы на рис. 1,а. Принимая источники в цепи на рис. 1,а идеальными и учитывая, что у идеального источника ЭДС внутреннее сопротивление равно нулю, а у идеального источника тока – бесконечности, в соответствии с методом наложения приходим к расчетным схемам на рис. 1,б…1,г. В этих цепях
где Таким образом,
В качестве другого примера использования метода определим взаимные проводимости Учитывая, что в структуре пассивного четырехполюсника не содержится источников энергии, на основании принципа наложения для состояния ключа в положении “1” можно записать
При переводе ключа в положение “2” имеем
Тогда, вычитая из уравнения (3) соотношение (5), а из (4)-(6), получим
откуда искомые проводимости
17) Теорема об эквивалентном генераторе и метод расчёта, основанный на ней Метод эквивалентного генератора, основанный на теореме об активном двухполюснике (называемой также теоремой Гельмгольца-Тевенена), позволяет достаточно просто определить ток в одной (представляющей интерес при анализе) ветви сложной линейной схемы, не находя токи в остальных ветвях. Применение данного метода особенно эффективно, когда требуется определить значения тока в некоторой ветви для различных значений сопротивления в этой ветви в то время, как в остальной схеме сопротивления, а также ЭДС и токи источников постоянны. Теорема об активном двухполюснике формулируется следующим образом: если активную цепь, к которой присоединена некоторая ветвь, заменить источником с ЭДС, равной напряжению на зажимах разомкнутой ветви, и сопротивлением, равным входному сопротивлению активной цепи, то ток в этой ветви не изменится. Ход доказательства теоремы иллюстрируют схемы на рис. 1.
Пусть в схеме выделена некоторая ветвь с сопротивлением Z, а вся оставшаяся цепь обозначена как активный двухполюсник А (рис. 1,а). Разомкнем эту ветвь между точками 1 и 2 (рис. 1,б). На зажимах этой ветви имеет место напряжение Указанные в теореме ЭДС и сопротивление можно интерпретировать как соответствующие параметры некоторого эквивалентного исходному активному двухполюснику генератора, откуда и произошло название этого метода. Таким образом, в соответствии с данной теоремой схему на рис. 2,а, где относительно ветви, ток в которой требуется определить, выделен активный двухполюсник А со структурой любой степени сложности, можно трансформировать в схему на рис. 2,б. Отсюда ток
где Уравнение (1) представляет собой аналитическое выражение метода эквивалентного генератора. Параметры эквивалентного генератора (активного двухполюсника) могут быть определены экспериментальным или теоретическим путями. В первом случае, в частности на постоянном токе, в режиме холостого хода активного двухполюсника замеряют напряжение В принципе аналогично находятся параметры активного двухполюсника и при синусоидальном токе; только в этом случае необходимо определить комплексные значения При теоретическом определении параметров эквивалентного генератора их расчет осуществляется в два этапа: 1. Любым из известных методов расчета линейных электрических цепей определяют напряжение на зажимах a-b активного двухполюсника при разомкнутой исследуемой ветви. 2. При разомкнутой исследуемой ветви определяется входное сопротивление активного двухполюсника, заменяемого при этом пассивным. Данная замена осуществляется путем устранения из структуры активного двухполюсника всех источников энергии, но при сохранении на их месте их собственных (внутренних) сопротивлений. В случае идеальных источников это соответствует закорачиванию всех источников ЭДС и размыканию всех ветвей с источниками тока. Сказанное иллюстрируют схемы на рис. 3, где для расчета входного (эквивалентного) сопротивления активного двухполюсника на рис. 3,а последний преобразован в пассивный двухполюсник со структурой на рис. 3,б. Тогда согласно схеме на рис. 3,б
В качестве примера использования метода эквивалентного генератора для анализа определим зависимость показаний амперметра в схеме на рис. 4 при изменении сопротивления R переменного резистора в диагонали моста в пределах В соответствии с изложенной выше методикой определения параметров активного двухполюсника для нахождения значения
Для определения входного сопротивления активного двухполюсника трансформируем его в схему на рис. 6. Со стороны зажимов 1-2 данного пассивного двухполюсника его сопротивление равно:
Таким образом, для показания амперметра в схеме на рис. 4 в соответствии с (1) можно записать
Задаваясь значениями R в пределах его изменения, на основании (2) получаем кривую на рис.7. В качестве примера использования метода эквивалентного генератора для анализа цепи при синусоидальном питании определим, при каком значении нагрузочного сопротивления
В соответствии с теоремой об активном двухполюснике обведенная пунктиром на рис. 8 часть схемы заменяется эквивалентным генератором с параметрами В соответствии с (1) для тока откуда для модуля этого тока имеем
Анализ полученного выражения (3) показывает, что ток I, а следовательно, и мощность будут максимальны, если Таким образом,
Данные соотношения аналогичны соответствующим выражениям в цепи постоянного тока, для которой, как известно, максимальная мощность на нагрузке выделяется в режиме согласованной нагрузки, условие которого Таким образом, искомые значения
18) Теорема взаимности и метод расчёта, основанный на ней Принцип взаимности основан на теореме взаимности, которую сформулируем без доказательства: для линейной цепи ток будет равен току
Отсюда в частности вытекает указанное выше соотношение Иными словами, основанный на теореме взаимности принцип взаимности гласит: если ЭДС В качестве примера использования данного принципа рассмотрим цепь на рис. 4,а, в которой требуется определить ток Перенесение источника ЭДС
где В соответствии с принципом взаимности ток
Не нашли, что искали? Воспользуйтесь поиском:
|