ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Температурное поле в зоне формирования соединенияРаспределение температуры в зоне формирования соединения измерить непосредственно при КТС пока никому не удалось, несмотря на многочисленные общеизвестные попытки это сделать. Поэтому и мнения о значениях температуры, например, в центре зоны сварки, расходятся от температуры плавления металла до температуры его кипения [7, 11, 107, 161]. Анализ известных аналитических методик расчетов температуры в зоне сварки [107, 158, 162, 163], которые учитывают выделение и перераспределении теплоты в ней, например, приведенный в работе [164], показывает, что пытаться удовлетворить требованиям современной технологии КТС по точности определения температуры в зоне сварки этим путем весьма проблематично. Поэтому и работы в этом направлении, по-видимому, бесперспективны. А. С. Гельман для исследования температурных полей в зоне сварки, по-видимому, первым применил решение дифференциальных уравнений распределения потенциалов и теплопроводности, которые осуществил численным методом, а точнее — методом конечных разностей [155, 164]. Это позволило ему при решении поставленных задач учесть изменение в процессе КТС теплофизических характеристик металла, геометрических параметров соединений, а также влияние энергетического и силового воздействия на зону сварки и скрытую теплоту плавления металла в ядре. Эту методику, которая заключается в совместном решении дифференциальных уравнений распределения потенциалов и теплопроводности, в дальнейшем с уточнением граничных условий стали широко использовать при решении различных задач технологии точечной сварки методом конечных разностей и методом конечных элементов, как отечественные [157, 165…174], так и зарубежные [175…179] исследователи. При исследованиях тепловых процессов в зоне формирования точечного сварного соединения в большинстве случаев осуществляют совместное решение дифференциального уравнения (2.15), описывающего электрическое поле, и дифференциального уравнения теплопроводности Фурье, которое при условии, что теплоемкость и плотность металла не зависят от температуры, записывают чаще всего в следующем виде [3, 16]: , (2.25) где сm, γ, λ и ρ — соответственно, массовая теплоемкость, плотность, коэффициенты теплопроводности и удельного электрического сопротивления металла; j — плотность тока. Сведения о температуре металла в зоне сварки, полученные расчетом по данным методикам, по-видимому, являются наиболее близкими к истинным ее значениям при конкретных условиях сварки. Так, расчетные изотермы температуры плавления (рис. 2.26) по конфигурации и геометрическому положению весьма близки к границам ядра расплавленного металла, экспериментально определяемым на различных стадиях его формирования [165, 172…174]. 2.4.3. Тепловой баланс в зоне сварки и расчет сварочного тока Теплоту QЭЭ, которая должна выделиться в зоне формирования соединения для получения ядра заданных размеров, можно рассчитать через теплосодержание металла в ней к концу процесса сварки и количество теплоты, отведенное из зоны сварки в процессе формирования соединения. Для этого используют условные схемы теплопередачи в зоне сварки и распределения в ней температуры (рис. 2.27). . (2.26) За прошедший период методики расчета его составляющих неоднократно изменялись и уточнялись [3, 7…11, 16, 85, 87, 161, 164]. По-видимому, наиболее точные, с учетом результатов исследований тепловых процессов с применением ЭВМ [165], методики расчета составляющих уравнения теплового баланса приведены в работе [3]. При расчетах по уравнению теплового баланса (2.26) общего количества теплоты QЭЭ, требуемой для формирования соединения заданных размеров, радиационной Q4 и конвективной Q5 теплоотдачей с поверхностей деталей обычно пренебрегают из-за их относительно малых величин. Для расчета теплоты в зоне сварки делают ряд допущений. Так, принимают, что средняя температура в цилиндре, диаметром dЭ, который приближенно равен диаметру ядра, и высотой, равной суммарной толщине двух деталей 2s, принимается равной температуре плавления ТПЛ. Считается, что заметное повышение температуры металла в деталях из-за отвода в них теплоты Q2 наблюдается на расстоянии х2 от границы цилиндра, которое определяется временем сварки tСВ и коэффициентом температуропроводности металла аМ: . При этом принимается, что средняя температура кольца шириной х2 вокруг цилиндра диаметром dЭ, равна . Определение потерь тепла в электроды производится аналогичным образом. При этом принимается, что за счет тепла Q3 нагревается до средней температуры, равной , участок электрода длиной , где аЭ — коэффициент температуропроводности металла электродов. С учетом сказанного сокращенное уравнение теплового баланса в развернутом виде описывают обычно следующим выражением [3]: ,(2.27) где γМ и γЭ — плотность металла свариваемых деталей и электродов; сМ и сЭ — теплоемкость металла свариваемых деталей и электродов; k1 — коэффициент, который учитывает неравномерность распределения температуры в кольце; k2 — коэффициент, учитывающий влияние на теплоотвод формы рабочей части электродов. С увеличением времени точечной сварки доля теплоты, отводимой в окружающий металл и электроды, всегда увеличивается, т. е. с увеличением времени сварки всегда уменьшается КПД процесса нагрева [181...184]. Количество теплоты QЭЭ, которое требуется для образования точечного сварного соединения заданных размеров, используют в основном для приближённого определения силы сварочного тока IСВ по зависимости (1.11), обеспечивающего выделение этой теплоты. Не нашли, что искали? Воспользуйтесь поиском:
|