Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Определение натуральной величины отрезка прямой




Определение натуральной величины отрезка прямой общего положения и углов наклона ее к плоскостям проекций производится способом прямоугольного треугольника.

Как видно из рисунка 1.3.7, длину отрезка прямой АВ можно определить из прямоугольного треугольника АВ1В1, в котором: катет АВ11В1 (проекция отрезка АВ на плоскость П1), а катет ВВ1= – разности расстояний точек А и В

от плоскости П1 (Δz=zА-zВ). Угол φ в этом же треугольнике определяет угол наклона отрезка прямой АВ к плоскости П1.

 

Рисунок 1.3.7 – Определение натуральной величины отрезка способом прямоугольного треугольника

 

Чтобы понять принцип нахождения натуральной величины отрезка прямой и угла наклона его к плоскости проекций на комплексном чертеже, совместим треугольник АВ1В1 с горизонтальной плоскостью проекций. Для этого примем горизонтальную проекцию А1В1 за один из катетов этого треугольника. Через точку В1 проведем на плоскости П1 прямую, перпендикулярную к А1В1, и отложим на ней от точки В1 отрезок ВВ1=Δz, равный длине второго катета. Соединив точки А1 и В11 прямой, получим прямоугольный треугольник А1В1В11 = АВ1В, так как А1В1=АВ1, В1В11=ВВ1 и угол А1В1В11=90º.

В соответствии с рисунком 1.3.8 выполняются построения по нахождению натуральной величины отрезка АВ и его угла наклона к горизонтальной плоскости проекций на комплексном чертеже.

Рисунок 1.3.8 – Определение натуральной величины отрезка способом прямоугольного треугольника на комплексном чертеже

 

Аналогичные построения можно выполнить, использовав фронтальную проекцию А2В2 в качестве одного из катетов треугольника, тогда другой катет - Δy будет равен разности расстояний точек А и В от плоскости П2. Гипотенуза треугольника будет также равна АВ, а угол ψ определит угол наклона отрезка прямой АВ к плоскости П2.

Выводы:

- натуральная величина прямой общего положения равна гипотенузе прямоугольного треугольника, одним катетом которого будет являться проекция отрезка на любую плоскость проекций, а другим – разность расстояния концов отрезка от той же плоскости;

- угол между катетом-проекций и гипотенузой равен натуральной величине угла наклона отрезка к той плоскости проекций, на которой выполнены построения.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных