ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Перпендикулярность прямой и плоскостиИз элементарной геометрии известно, что прямая f2, перпендикулярна плоскости, если она перпендикулярна двум прямым, лежащим в этой плоскости. На заданной плоскости в качестве двух пересекающихся прямых удобно выбирать линии уровня – горизонталь или фронталь. В этом случае можно воспользоваться свойствами проекций прямого угла. Теорема. Для того, чтобы прямая была перпендикулярна плоскости, необходимо и достаточно, чтобы горизонтальная проекция прямой была перпендикулярна горизонтальной проекции горизонтали, а фронтальная проекция – фронтальной проекции фронтали плоскости. Задача. Построить проекции перпендикуляра l, опущенного из точки D (D1,D2) на плоскость общего положения Σ(АВС) (рисунок 1.3.23). Решение: 1) В плоскости Σ(АВС) проведем горизонталь h(h1,h2) и фронталь f(f1,f2). 2) Выполним условия перпендикулярности прямой и плоскости. Для этого из точки D1 проведем горизонтальную проекцию перпендикуляра l1 таким образом, чтобы l1┴ h1, а из точки D2 проведем l2, чтобы l2^ f2. 3) Прямая l в этом случае перпендикулярна плоскости Σ(АВС), так как она перпендикулярна двум пересекающим прямым этой плоскости (h∩f). Таким образом l1^ h1 и l2^ f2, следовательно l^ Σ(АВС).
Рисунок 1.3.23 – Перпендикулярность прямой и плоскости
Не нашли, что искали? Воспользуйтесь поиском:
|