Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Аксонометрические проекции




Способ получения однопроекционного обратимого чертежа называется аксонометрическим. Он даёт более наглядное изображение объекта.

Аксонометрический чертёж состоит только из одной параллельной проекции данного объекта, дополненной проекцией пространственной системы координат, к которой предварительно отнесён изображаемый объект.

Выберем в пространстве некоторую прямоугольную систему осей координат Оxyz (натуральную систему) и точку А, жёстко связанную с этой системой. Отложим на каждой из осей координат отрезок е, который назовём натуральным масштабом, и обозначим полученные отрезки соответственно через е х, е y, е z в соответствии с рисунком 2.1

Измерив, расстояние точки до координатных плоскостей единичным отрезком е, получим три натуральные координаты точки, которые определяют её положение относительно данной системы координат.

Спроецируем параллельно по заданному направлению s точку А вместе с системой отнесения на некоторую плоскость П¢, которая называется аксонометрической (картинной) плоскостью проекций. Тогда О¢ x¢ y¢ z¢аксонометрическая система координат; проекции единичных отрезков на оси O¢x¢, O¢y¢, O¢z¢, обозначенные через е¢ х, е¢y, z аксонометрические масштабы; А¢аксонометрическая проекция точки А; А1 – аксонометрическая проекция проекции точки А на координатную плоскость хОу, она называется вторичной проекцией.

В зависимости от направления проецирования получают параллельную косоугольную или прямоугольную аксонометрию.

Положение точки А относительно системы координат Охуz определяется её натуральной координатной ломаной ОАхА1А. Зная натуральные единичные отрезки, определим натуральные координаты точки А:

 
 

При параллельном проецировании величины отношений отрезков прямой сохраняются, отсюда основное свойство аксонометрических проекций: аксонометрические координаты точки, измеренные аксонометрическими масштабами, численно всегда равны координатам точки

 

 
 

Рисунок 2.1 – Аксонометрический чертёж

 

Аксонометрические проекции принято подразделять на триметрические, когда все три аксонометрических масштаба различны, диметрические, когда равны два из них, и изометрические, когда все три масштаба одинаковы.

Для большего удобства построений в аксонометрии вводится понятие показателей искажения. Показателем искажения называют отношение аксонометрического масштаба к соответствующему натуральному.

 
 

Обозначив через p показатель искажения по оси х, через q – показатель искажения по оси y и через r – показатель искажения по оси z, можно написать:

Триметрические проекции: p ¹ r ¹ q, диметрические проекции: p = r ¹ q, изометрические проекции: p = r = q.

Показатели искажения в косоугольной аксонометрии связаны следующей зависимостью:

p 2+ q 2+ r 2=2+ ctg 2 j,

где j - угол наклона направления проецирования к плоскости проекций П¢.

Так как обычно мы рассматриваем предметы, расположенные прямо перед глазом, то прямоугольная (ортогональная) аксонометрия в большей степени, чем косоугольная, удовлетворяет условию наглядности изображения. В прямоугольной аксонометрии угол j =90º, ctgj= 0, тогда зависимость показателей искажения следующая:

p 2+ q 2+ r 2=2.

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных