ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Стандартные аксонометрические системыИз частных видов аксонометрических проекций, предусмотренных государственным стандартом, чаще всего используют ортогональную изометрию, и ортогональную диметрию. Ортогональная изометрия. В изометрии показатели искажения по всем трём осям одинаковы, т.е. p = q = r. Аксонометрические оси в ортогональной изометрии образуют между собой углы по 120º (рисунок 2.2.1). В ортогональной изометрии 3 р 2=2 или p = q = r =0,82. На практике для удобства построения пользуются приведённой ортогональной изометрией, в которой показатели искажения приводятся к единице, т.е. p = q = r =1. При этом коэффициент приведения будет равен m =1/ p =1,22. Это означает, что приведённая ортогональная изометрия даёт увеличение изображения приблизительно в 1,22 раза, т.е. масштаб такого изображения будет M 1,22:1.
Рисунок 2.2.1 – Оси ортогональной изометрии
Ортогональная диметрия. В то время, как ортогональная изометрия существует только одна, ортогональных диметрий можно построить бесчисленное множество. Наиболее простую и распространённую диметрию получают, если p = r и q = p /2. В ортогональной диметрии , откуда Тогда p=r =0,94; q =0,47. В приведённой ортогональной диметрии показатели искажения будут p = r =1 и q =0,5. При этом коэффициент приведения равен: m =1/ p =1,06. Это означает, что приведённая ортогональная диметрия даёт изображение в масштабе М 1,06:1. Расположение осей определяется с помощью тангенсов углов наклона осей к горизонтальной линии. Практически можно использовать следующий способ построения аксонометрических осей в ортогональной диметрии (рисунок 2.2.2). Рисунок 2.2.2 – Оси ортогональной диметрии
Через точку О¢ проводим вспомогательную прямую, перпендикулярную к выбранной оси z¢. В обе стороны от точки О¢ откладываем на этой прямой по восемь произвольных, но равных между собой отрезков. В направлении, противоположном положительному направлению оси z¢, откладываем от левой конечной точки один такой же отрезок, а от правой конечной точки – семь отрезков. Соединив полученные точки с точкой О¢, получим аксонометрические оси x¢ и y¢.
Не нашли, что искали? Воспользуйтесь поиском:
|