Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Терминология т еории сист ем




Определение понятия "система". В настоящее время нет единства в определении понятия "система". В первых определениях в той или иной форме говорилось о том, что система - это элементы и связи (отношения) между ними. Например, основоположник теории систем Людвиг фон Берталанфи определял систему как комплекс взаимодействующих элементов или как совокупность элементов, находящихся в определенных отношениях друг с другом и со средой. А. Холл определяет систему как множество предметов вместе со связями между предметами и между их признаками. Ведутся дискуссии, какой термин - "отношение" или "связь" - лучше употреблять.

Позднее в определениях системы появляется понятие цели. Так, в "Философском словаре" система определяется как "совокупность элементов, находящихся в отношениях и связях между собой определенным образом и образующих некоторое целостное единство".

В последнее время в определение понятия системы наряду с элементами, связями и их свойствами и целями начинают включать наблюдателя, хотя впервые на необходимость учета взаимодействия между исследователем и изучаемой системой указал один из основоположников кибернетики У. Р. Эшби.

М. Масарович и Я. Такахара в книге "Общая теория систем" считают, что система - "формальная взаимосвязь между наблюдаемыми признаками и свойствами".

Таким образом, в зависимости от количества учитываемых факторов и степени абстрактности определение понятия "система" можно представить в следующей символьной форме. Каждое определение обозначим буквой D (от лат. definitions) и порядковым номером, совпадающим с количеством учитываемых в определении факторов.

D1. Система есть нечто целое: S=A(1,0).

Это определение выражает факт существования и целостность. Двоичное суждение А(1,0) отображает наличие или отсутствие этих качеств.

D2. Система есть организованное множество (Темников Ф. Е.):

S=(opr, М),

где орг - оператор организации; М - множество.

D3. Система есть множество вещей, свойств и отношений (Уемов А. П.): S=({x к (и к {г}),

где т - вещи, п - свойства, г - отношения.

D4. Система есть множество элементов, образующих структуру и обеспечивающих определенное поведение в условиях окружающей среды: ST, BE, Е),

где s - элементы, ST - структура, BE - поведение, Е - среда.

D5. Система есть множество входов, множество выходов, множество состояний, характеризуемых оператором переходов и оператором выходов:

S=(X,Y,Z,H,G),

где X - входы, Y - выходы, Z - состояния, Н - оператор переходов, G - оператор выходов. Это определение учитывает все основные компоненты, рассматриваемые в автоматике.

D6. Это шестичленное определение, как и последующие, трудно сформулировать в словах. Оно соответствует уровню биосистем и учитывает генетическое (родовое) начало GN, условия существования KD, обменные явления MB, развитие EY, функционирование FC и репродукцию (воспроизведения) RP: S=(GN, KD, MB, EY, FC, RP).

D7. Это определение оперирует понятиями модели F, связи SC, пересчета R, самообучения FL, самоорганизации FQ, проводимости связей СО и возбуждения моделей JN:

S=(F, SC, R, FL, FO, CO, JN).

Данное определение удобно при нейрокибернетических исследованиях.

D8. Если определение D5 дополнить фактором времени и функциональными связями, то получим определение системы, которым обычно оперируют в теории автоматического управления:

S=(T,X,Y,Z,^.,Y,

где Т - время, X - входы, Y - выходы, Z - состояния, Q. - класс операторов на выходе, Y - значения операторов на выходе, 77 - функциональная связь в уравнении y(t2)= 77(x(ti),z(ti),t2), (р - функциональная связь в уравнении z(t2)=^(x(ti), z(ti), t2).

D9. Для организационных систем удобно в определении системы учитывать следующее:

S=(PL, RO, RJ, EX, PR, DT, SY, RD, EF),

где PL - цели и планы, RO - внешние ресурсы, RJ - внутренние ресурсы, EX - исполнители, PR - процесс, DT - помехи, SY - контроль, RD - управление, EF - эффект.

Последовательность определений можно продолжить до Dn (п=9, 10, 11,...), в котором учитывалось бы такое количество элементов, связей и действий в реальной системе, которое необходимо для решаемой задачи, для достижения поставленной цели. В качестве "рабочего" определения понятия системы в литературе по теории систем часто рассматривается следующее: система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство.

Под системой, понимается объект, свойства которого не сводятся без остатка к свойствам составляющих его дискретных элементов (неаддитивность свойств). Интегративное свойство системы обеспечивает ее целостность, качественно новое образование по сравнению с составляющими ее частями.

Любой элемент системы можно рассматривать как самостоятельную систему (математическую модель, описывающую какой - либо функциональный блок, или аспект изучаемой проблемы), как правило более низкого порядка. Каждый элемент системы описывается своей функцией. Под функцией понимается присущее живой и костной материи вещественно-энергетические и информационные отношения между входными и выходными процессами. Если такой элемент обладает внутренней структурой, то его называют подсистемой, такое описание может быть использовано при реализации методов анализа и синтеза систем. Это нашло отражение в одном из принципов системного анализа - законе системности, говорящим о том что любой элемент может быть либо подсистемой в некоторой системе либо, подсистемой среди множества объектов аналогичной категории. Элемент всегда является частью системы и вне ее не представляет смысла.

Сист емный анализ - методология исследования сложных, часто не вполне определенных проблем теории и практики.

Строго говоря, различают три ветви науки, изучающей системы:

1. системологию (теорию систем) которая изучает теоретические аспекты и использует теоретические методы (теория информации, теория вероятностей, теория игр и др.);

2. сист емный анализ (методологию, теорию и практику исследования систем), которая исследует методологические, а часто и практические аспекты и использует практические методы (математическая статистика, исследование операций, программирование и др.);

3. системотехнику, систем отехно логику (практику и технологию проектирования и исследования систем).

За термин системотехнологика ответственность несет автор. Такое деление достаточно условно.

Общим у всех этих ветвей является системный подход, системный принцип исследования - рассмотрение изучаемой совокупности не как простой суммы составляющих (линейно взаимодействующих объектов), а как совокупности нелинейных и многоуровневых взаимодействующих объектов.

Любую предмет ную облает ь также можно определить как системную.

Пример. Информат ика - наука, изучающая информационно-логические и алгоритмические аспекты системных процессов, системные аспекты информационных процессов. Это определение можно считать системным определением информат ики.

Сист емный анализ тесно связан с синергет икой. Синергет ика - междисциплинарная наука, исследующая общие идеи, методы и закономерности организации (изменения структуры, ее пространственно-временного усложнения) различных объектов и процессов, инварианты (неизменные сущности) этих процессов. "Синергический" в переводе означает "совместный, согласованно действующий". Это теория возникновения новых качественных свойств, структур на макроскопическом уровне.

Сист емный анализ тесно связан и с философией. Философия дает общие методы содержательного анализа, а сист емный анализ - общие методы формального, межпредметного анализа предмет ных облает ей, выявления и описания, изучения их системных инвариантов. Можно дать и философское определение системного анализа: сист емный анализ - это прикладная диалектика.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных