ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Испытанияобразца данных размеров насамовозгорание, ч
35X35X35 6 50X50X50 12 70X70X70 24 1ООХЮ0ХЮ0 48 140X140X140 96 200X200X200 192 '1,2 1fi 1,6 1,8 2ft 2,2 igS Рис. 2.14. Зависимость условий теплового самовозгорания от удельной поверхности (а) и времени до самовозгорания (б) Через точки на графиках проводят прямые линии и составляют уравнения этих прямых lgtc = Ap-np\gS; (2.17) igtc = Ab-nb\gT, (2.17a) где Ар, пр, Аь, пь — коэффициенты, определяемые по опытным данным. Уравнения (2.17) и (2.17 а) определяют условия теплового самовозгорания исследуемого вещества: при какой температуре нагрева вещества может произойти самовозгорание определенной его массы и какова длительность процесса до самовозгорания. Минимальная энергия зажигания. Для определения минимальной энергии зажигания газо-, паро- или пыле-воздушную смесь оптимальной концентрации зажигают электрическим разрядом определенной энергии. За минимальную энергию зажигания принимают электрическую энергию заряженного конденсатора, способную зажечь наиболее легковоспламеняющуюся газо-, паро- или пылевоздушную смесь с вероятностью 0,01 при оптимальных параметрах искрового разряда. Для определения минимальной энергии зажигания газов и паров применяют установку, схема которой показана на рис. 2.15. Установка состоит из реакционного сосуда — взрывной бомбы из нержавеющей стали вместимостью 1 дм3, рассчитанной на давление 2000 кПа. В боковые гнезда по центру сосуда герметично вмонтированы фторопластовые изоляторы с электродами зажигания в виде стальных стержней диаметром 1,0 ±0,2 мм с полусферическими наконечниками диаметром около 1,5 мм, на которые при определении критическое расстояние между электродами надевают стеклянные или фторопластовые диски диаметром 25±1 мм. Расстояние между электродами регулируют индикаторной головкой или микрометрическим винтом. Один из электродов закрепляют неподвижно. В заземленном (подвижном) электроде имеется вакуумное уплотнение. При сборке установки должна быть обеспечена соосность электродов 0,2±0,1 мм. Реакционный сосуд оборудован клапанами для ввода испытуемой смеси и удаления продуктов горения, а также предохранительным клапаном для сброса избыточного давления при воспламенении смеси. Для визуального наблюдения за воспламенением смеси в сосуде предусмотрены смотровые окна, выполненные из кварцевого стекла. Смеситель вместимостью 18±2 дм3 изготовлен из нержавеющей стали и рассчитан на давление до 500 кПа. Он снабжен образцовым манометром для измерения парциальных давлений компонентов приготовляемой смеси и осушителем с хлоридом кальция.
Рис. 2.15. Установка для определения минимальной энергии зажигания газов и паров жидкостей: / — смеситель; 2 — баллоны с горючим газом и воздухом; 3 — осушитель с хлоридом кальция; 4 — образцовый манометр; 5 — ртутный манометр; 6 — измеритель электрического заряда; 7 — реакционный сосуд; 8 — предохранительный клапан; 9 — микрометрический винт; 10 — вакуумный насос; II — пересчетный прибор; 12 — ионизатор; 13 — электрод (неподвижный); 14 — фторопластовый изолятор; 15 — конденсатор; 16 — килрвольтметр; 17 — ограничительное сопротивление; 18 — высоковольтный источник постоянного тока; 19 — стабилизатор напряжения Электрическая система зажигания содержит: высоковольтный стабилизированный источник постоянного тока, обеспечивающий регулируемое рабочее напряжение до 20 кВ; набор вакуумных или фторопластовых конденсаторов с электрическим зарядом от 0,5 до 2,5■ 104 пФ; статический киловольтметр типа С-196 или аналогичный; измеритель электрического заряда типа Е8-1 или аналогичный; ограничительное сопротивление зарядного тока от 109 до 1012 Ом; пересчетный прибор для счета и регистрации количества искровых разрядов. Перед проведением испытаний выполняют следующие операции: реакционный сосуд проверяют на герметичность; в смесителе приготовляют, исходя из парциальных давлений, измеряемых образцовым манометром, газо-, паровоздушную смесь заданного состава. При подготовке паровоздушной смеси смеситель снабжается электроподогревающим устройством для предотвращения конденсации паров. Температуру в смесителе и в реакционном сосуде поддерживают примерно равной верхнему температурному пределу воспламенения исследуемой жидкости; определяют критическое расстояние между электродами. Для этой цели на концах электродов укрепляют фторопластовые или кварцевые диски, вакуумируют реакционный сосуд до остаточного давления 0,5 ± ±0,1 кПа и затем впускают в него приготовленную в смесителе стехиометрическую смесь исследуемого газа или пара с воздухом (если испытания проводят при атмосферном давлении, то в сосуде необходимо установить давление 101,3 кПа); из нулевого положения, определяемого по омметру, электроды с дисками устанавливают на расстоянии 0,1 мм один от другого. Затем к неподвижному электроду подключают вакуумный конденсатор с электрическим зарядом не более 400 пФ при испытании газов и не более 700 пФ при испытании паров, включают высоковольтный источник питания и плавно поднимают напряжение до пробоя разрядного промежутка, устанавливая по пересчетному прибору частоту искрения от 5 до 10 разрядов в минуту. Испытания ведут до воспламенения смеси или до получения 100 разрядов, если воспламенение не проис- 10 20 30 W 50 ВО 70 Объемная доля горючего в смеси,% 10 1U го 35 Энергия зажигания, мДж Рис. 2.16. Условия зажигания газов и паров жидкостей: а — зависимость критического расстояния от содержания горючего в сиеси; б — зависимость вероятности воспламенения горючей смеси от энергии зажигания ходит. Испытания на воспламенение повторяют четыре-пять раз с новыми порциями смеси из смесителя. После проведения каждого испытания реакционный сосуд поочередно наполняют воздухом и вакуумируют три — пять раз для удаления испытанной смеси или продуктов сгорания. Если воспламенение не происходит, то увеличивают разрядный промежуток электродов на 0,1 мм и проводят аналогичную серию испытаний на воспламенение. Если воспламенение происходит, то это свидетельствует о достижении критического разрядного промежутка для стехиометрической смеси. Таким же способом находят критический разрядный промежуток электродов для пяти — восьми смесей, содержащих горючего компонента меньше или больше, чем в стехиометрической смеси. По полученным данным строят кривую зависимости критического разрядного промежутка электродов (ось ординат в логарифмических координатах) от концентрации горючего компонента в смеси (рис. 2.16, а). Величину разрядного промежутка, соответствующую минимуму на полученной кривой, принимают за критическое расстояние между электродами, а соответствующую ему газо-, паровоздушную смесь — за наиболее легковоспламеняющуюся. Затем приступают к определению минимальной энергии зажигания. Для этого с электродов снимают диски и под электродами устанавливают ионизатор. Испытания на воспламенение газо-, паровоздушной смеси выполняют точно так же, как при определении критического расстояния между электродами, при этом испытывают только наиболее легковоспламеняющуюся смесь. Каждую серию испытаний ведут при одном и том же напряжении перед разрядом U\ и одном и том же электрическом заряде С конденсатора до получения не менее 10 воспламенений смеси с вероятностью не менее 0,01. Если при заданных U и С смесь не воспламенилась при 1000 разрядах (при этом число разрядов в одной и той же порции смеси в реакционном сосуде не должно превышать 100), то считают, что от данной энергии зажигания смесь неспособна воспламениться. В следующей серии увеличивают электрический заряд конденсатора и так же испытывают смесь на воспламенение до получения не менее 10 воспламенений с вероятностью не менее 0,01 или до 1000 разрядов в отсутствие воспламенений. Последовательно изменяя электрический заряд конденсатора и повторяя испытания, находят зависимость энергии зажигания W от вероятности воспламенения Р. Вероятность воспламенения смеси рассчитывают как где т — число испытаний, при которых смесь воспламенилась; п — общее число испытаний на воспламенение в данной серии. Энергию зажигания W рассчитывают по формуле (в Дж) ? 1/1), (2.19) где С — электрический заряд конденсатора, Ф; LJ\, V2 — напряжение на конденсаторе соответственно перед пробоем и после пробоя искрового промежутка, В. В логарифмических координатах строят кривую зависимости вероятности воспламенения от величины энергии зажигания (рис. 2.16,6). Значение энергии зажигания, соответствующее вероятности воспламенения 0,01, принимают за минимальную энергию зажигания исследуемого вещества.
Рис. 2.17. Установка для определения минимальной энергии зажигания горючих пылей: Блок управления; // — счетный механизм; /// — блок зарядки; / — реакционная камера; 2 — вибратор; 3 — стакан; 4 — кронштейн; 5 — электрод; 6 — киловольтметр; 7 — конденсатор; 8 — пылесборник Измерение минимальной энергии зажигания пылей проводят на установке, схема которой показана на рис. 2.17. Реакционная камера установки имеет прямоугольную форму; камера изготовлена из листовой нержавеющей стали толщиной 4± 1 мм или из оргстекла толщиной 6±2 мм, в которой распыляется и зажигается пылевоздушная смесь. На стенках камеры укреплены заостренные электроды диаметром 1,0± ±0,1 мм в цилиндрических изоляторах (из любого диэлектрика) диаметром 15 ±1 мм. Виброситовой дозатор содержит вибратор и подвешенный на кронштейне стакан. Нижнее отверстие стакана закрыто легкосменяемой металлической сеткой с ячейками определенных размеров. Дозатор обеспечивает подачу в разрядный промежуток заданного количества исследуемого вещества (концентрация аэровзвеси от 10 до 1000 г-м~3). Кроме того, установка содержит: пылесборник; блок зарядки рабочего конденсатора, состоящий из источника высокого напряжения постоянного тока, позволяющего подавать на электроны регулируемое напряжение от 0 до 30 кВ; киловольт-метр; измеритель электрического заряда; набор вакуумных или фторопластовых конденсаторов с электрическим зарядом от 50 до 25 000 пФ, которые должны быть рассчитаны на рабочее напряжение от 8 до 10 кВ; блок управления, обеспечивающий заданную последовательность включения и выключения приборов установки при ее работе в автоматическом режиме, а также блокировку дверцы защитного шкафа и сигнализацию о наличии напряжения на установке; счетный механизм для регистрации числа искровых разрядов. До начала испытаний в стакан дозатора насыпают пыль исследуемого вещества, включают вибратор и проверяют возможность получения аэровзвеси различной концентрации. Минимальную энергию зажигания пылевоздушной смеси определяют в несколько этапов, начиная с определения оптимальной концентрации исследуемого вещества. Для этого устанавливают зависимость вероятности воспламенения от подаваемого на вибратор напряжения. Эту зависимость определяют при заведомо зажигающей энергии (дающей вероятность воспламенения от 0,3 до 0,5), при разрядном промежутке электродов от 3 до 5 мм и при наличии в разрядной цепи активного сопротивления R. Вероятность воспламенения смеси рассчитывают по формуле (2.18). При этом число воспламенений должно быть одинаковым во всех испытаниях и не менее десяти. Число разрядов определяют по показаниям счетного механизма, а число воспламенений — визуально. Затем при найденном напряжении на вибраторе, обеспечивающем наибольшую вероятность воспламенения (рис. 2.18, а), измеряют концентрацию пыли в пылевоздушной смеси при помощи отсекателя (пружинного устройства), который мгновенно вводят в зону расположения электродов. Определив массу пыли, осевшей на нижней плоскости отсекателя, рассчитывают оптимальную концентрацию пылевоздушной смеси Q по формуле (в г/см3). 2 (2.20) где М — масса пыли на нижней плоскости отсекателя, г; d — диаметр сита виброситового дозатора, см; h — расстояние между плоскостями отсекателя, см. После выявления оптимальной концентрации пылевоздушной смеси определяют оптимальные параметры разрядного контура. За оптимальные параметры разрядного контура принимают такое значение включенного последовательно по отношению к конденсатору добавочного активного сопротивления R, при котором обеспечивается наибольшая вероятность воспламенения. Оптимальное значение добавочного сопротивления 20 40 SO 80 100 120M Напряжение на Вибраторе, В * г з 4 в ю5 г з к б юв добавочное сопротивление разрядного контура, Ом
0 1 2 3 4 5 6 7 Разрядный промежуток, мм 10 1k 20 25 35 k5 ВО Энергия зажигания, нДж Рис. 2.18. Условия зажигания горючих пылей: а — зависимость вероятности воспламенения горючей смеси от напряжения яа вибраторе; б — зависимость вероятности воспламенения горючей смеси от добавочного сопротивления зарядного контура; в — зависимость вероятности воспламенения горючей смеси от величины разрядного промежутка; г — зависимость вероятности воспламенения горючей смеси от энергии зажигания определяют при найденной оптимальной концентрации пылевоздушной смеси и разрядном промежутке от 3 до 5 мм снятием характеристик Р = /(/?). По экспериментальным данным при различных значениях R строят в логарифмических координатах кривую зависимости вероятности воспламенения от величины добавочного сопротивления в разрядном контуре (рис. 2.18,6). Величину добавочного сопротивления, соответствующую максимуму кривой, принимают за оп- тимальное значение R. Если явного максимума на кривой не наблюдается, а имеется монотонное возрастание функции P = f(R), то за оптимальное значение R- принимают параметры, при которых угол наклона графика к горизонтали не превышает 15°. При оптимальных параметрах разрядного контура и оптимальной концентрации пылевоздушной смеси определяют оптимальный разрядный промежуток электродов снятием характеристик P = f(d). Оптимальным называют разрядный промежуток, обеспечивающий наибольшую вероятность воспламенения. По экспериментальным данным строят кривую зависимости вероятности воспламенения от величины разрядного промежутка (рис. 2.18, в). Значение разрядного промежутка, соответствующее максимуму кривой, принимают за оптимальный разрядный промежуток. При оптимальных значениях концентрации, параметров разрядного контура и разрядного промежутка определяют минимальную энергию зажигания снятием характеристик P = f(W). По экспериментальным данным строят в логарифмических координатах кривую зависимости вероятности воспламенения от величины энергии зажигания (рис. 2.18, г). Значение энергии зажигания, соответствующее вероятности воспламенения 0,01, принимают за минимальную энергию зажигания исследуемого вещества. Кислородный индекс. Для определения кислородного индекса КИ вертикально закрепленный образец материала зажигают в кислородно-азотной среде и оценивают результаты испытания. Изменяя концентрацию кислорода в кислородно-азотной смеси, определяют ее минимальное значение, при котором наблюдается самостоятельное горение образца. Установка для измерения кислородного индекса изображена на рис. 2.19, а. Реакционная камера представляет собой кварцевую трубку внутренним диаметром не менее 75 мм и высотой 450 мм, установленную вертикально на основании. Нижняя часть камеры на высоту 80—100 мм заполнена бусинами диаметром от 3 до 5 мм из стекла или другого материала для обеспечения равномерной скорости газового потока по сечению камеры. Для камеры диаметром от 75 до 100 мм при проведении испытаний с кислородно-азотной смесью, в которой концентрация кислорода меньше 21 %, t ♦ Кислород Дзот №0,23 50'0,26 Рис. 2.19. Установка для определения кислородного индекса: / — реакционная камера; 2 — держатель образца; 3 — колпачок; 4 — сетка; S — бусины; 6 — газовая горелка; 7 — ротаметры; 8, 9 — клапаны следует использовать колпачок, сужающее отверстие которого должно быть диаметром не более 40 дм. Держатель образца может быть любой конструкции, он служит для удерживания образца за основание в вертикальном положении в центре камеры. Держатель снабжен проволочной сеткой с ячейками размером от 1 до 1,6 мм для улавливания частиц и капель, падающих с горящего образца. Установка снабжена двумя ротаметрами с пределами измерения расхода газа до 0,9 м3-ч~\ трубопроводами с клапанами для регулировки подаваемого в реакционную камеру газа, рамкой (рис. 2.19,6) для испытания пленочных и гибких листовых материалов; источником зажигания образца, представляющим собой горелку с диаметром выходного отверстия 2± 1 мм. Топливом для горелки служит любой горючий газ, подачу которого регулируют так, чтобы длина пламени составляла 16±4 мм при вертикальном расположении горелки. Для испытаний подготавливают не менее 15 образцов в форме брусков, размеры которых приведены в табл. 2.6. Таблица 2.6. Размеры образцов для измерения КИ (в мм)
Поверхности образцов не должны иметь трещин, сколов и других видимых дефектов. На поверхность образца наносят метки: при испытании образцов форм I, II, III или IV по методу А (зажигание верхнего торца образца) на расстоянии 50 мм от того конца образца, который будет зажигаться; при испытании образцов форм I, II, III или IV по методу Б (зажигание верхнего торца и боковой поверхности) на расстоянии 10 и 60 мм, а образцов формы V на расстоянии 20 и 100 мм от того конца, который будет зажигаться. Калибруют систему контроля скорости газового потока, обеспечивая точность измерения не менее чем 2 мм-с~' и контроль концентрации кислорода при помощи химического газоанализатора или по стандартным кислородно-азотным смесям. Пригодность установки к работе определяют измерением кислородного индекса контрольных веществ, приведенных в табл. 2.7. Испытания проводят при температуре окружающего воздуха 23±2°С и относительной влажности воздуха 50 ±5 %. Выбирают начальную концентрацию кислорода в кислородно-азотной смеси. Начальную концентрацию кислорода оценивают, исходя из опыта работы с материалами, аналогичными испытуемому. Если этого не удается сделать, то один из приготовленных образцов сжигают на воздухе. При быстром горении образца испытание начинают с концентрации кислорода, равной 18 %. Если образец горит медленно или неустойчиво, то начальную концентрацию кислорода выбирают равной 21 %. Если образец затухает на воздухе, то испытания начинают с концентрации кислорода, равной 25%. Образец устанавливают вертикально в центре камеры таким образом, чтобы верхний его торец находился не менее чем на 100 мм ниже верхнего края камеры, а нижний торец — не менее чем на 100 мм выше уровня бусинок. Устанавливают скорость газового потока через реакционную камеру равной 40±10 мм-с""1. Перед зажиганием каждого образца камеру следует продуть кислородно-азотной смесью заданного состава в течение 30 ±2 с. Зажигают закрепленный образец, выбирая один из двух методов зажигания. Под зажиганием понимают начало пламенного горения образца. Некоторые материалы могут гореть без видимого пламени, например в режиме тления. В протоколе испытаний в этом случае необходимо делать соответствующую запись. При использовании метода зажигания А воздействуют пламенем горелки на верхний торец образца, стараясь охватить пламенем всю площадь торца, при этом не касаясь пламенем боковых поверхностей образца. Продолжительность зажигания составляет не более 30 с. Каждые 5 с горелку отстраняют от образца и оценивают площадь горения. При охвате пламенем всего торца зажигание считают законченным. При использовании метода зажигания Б воздействуют пламенем горелки на верхний торец образца и его боковые поверхности на расстоянии до 6 мм от верхнего торца. Продолжительность зажигания состав* ляет не более 30 с. Каждые 5 с горелку отстраняют от
Полипропилен Полиметилме-такрилат толщиной, мм: 3 10 Пленка ПВХ толщиной 0,02 мм 18,3—19,0 17,7—18,1 17,7—18,1 17,3—18,0
17,2—17,9 17,5—18,6 22,6-23,5 образца и оценивают площадь горения. При распространении пламени до верхней метки зажигание считают законченным. Оценивают изменение образца при горении, отмечая такие явления, как плавление и образование капель, обугливание, неустойчивое горение, тление. Измеряют продолжительность горения образца после зажигания и длину образца, по которой распространилось пламя. Результат испытания считают положительным, если достигнуты критерии, указанные в табл. 2.8. Таблица 2.8. Критерии определения КИ
Форма образца
Критерии горения Метод зажигания горения, с пламени, мм I, П, III, IV А 180 50 от верхнего торца образца V Б 180 80 ниже верхней метки Испытанный образец вынимают. Очищают камеру от твердых продуктов горения и охлаждают ее до 23 ± 2 °С. При испытании следующего образца уменьшают концентрацию кислорода в газовой смеси, если достигнут хотя бы один из критериев горения, указанных в табл. 2.8; увеличивают концентрацию кислорода в газовой смеси, если ни один из критериев, указанных в табл. 2.8, не достигнут. Проводят предварительные испытания с произвольным шагом изменения концентрации кислорода в газовой смеси и определяют такие два значения концентрации кислорода, различающиеся не более чем на 1 %, при одном из которых выполняется хотя бы один из критериев табл. 2.8, а при другом — ни один из указанных критериев не выполняется. Из этих значений выбирают второе в качестве начального для проведения серии основных испытаний. Серию основных испытаний проводят с контролируемой величиной шага d изменения концентрации кислорода, чтобы найти такую концентрацию, при которой происходит изменение характера горения образца в соответствии с критерием табл. 2.8; зат^м дают статистическую оценку этой концентрации по малому числу испытаний, используя метод Диксона. Начиная с концентрации кислорода в газовой смеси, полученной в предварительных испытаниях, испытывают один образец. Результат испытания записывают как X, если удовлетворяется хотя бы один из критериев табл. 2.8, и как 0 — если не удовлетворяется. Полученное значение концентрации кислорода и результат испытания являются первыми в серии испытаний Nt с контролируемым шагом. Используя шаг изменения концентрации кислорода d, равный не менее 0,2 % от общей газовой смеси (т. е. уменьшая на d, если результат предыдущего испытания был X, и увеличивая на d, если результат был 0), испытывают серию образцов до тех пор, пока не будет получен результат, отличающийся от результата первого испытания основной серии. Полученные значения концентрации кислорода и результаты испытаний составляют серию Nl. Затем проводят еще пять испытаний, изменяя концентрацию кислорода на d. Последнее значение.концентрации в серии основных испытаний обозначается ка Cf, а все результаты и соответствующие значения концентрации серии основных испытаний записывают как Nt= Nl-\-5. Проверяют величину шага изменения концентрации кислорода d, Nt — серии в соответствии с условием 23/3<d<l,5a, (2.21) где a — оценка стандартного отклонения концентрации кислорода, рассчитываемая для последних шести испытаний в Л/г-серии (включая Cf) по формуле
где Vi — последовательные значения концентрации кислорода, полученные в последних шести испытаниях Wr-серии; n = 6. Если условие неравенства (2.21) не выполняется и rf<C2a/3, то повторяют испытания с увеличенным значением of до тех пор, пока не выполнится условие (2.21). Если d> 1,5a, то повторяют испытания с уменьшенным значением d до тех пор, пока не выполнится условие (2.21); при этом d не должно быть менее 0,2 %, если нет специальных требований к материалу. Если условия неравенства (2.21) выполняются, то кислородный индекс рассчитывают по формуле (2.23) 53 где К — фактор, выбираемый из табл. 2.9; dF —окончательный шаг изменения концентрации кислорода, выбранный в соответствии с условиями (2.21). Значение К и его математический знак зависят от результатов серии основных испытаний и" могут быть найдены из табл. 2.9 следующим образом: если первый результат серии NL был равен 0, а первый результат серии из пяти испытаний был X, то в графе 1 табл. 2.9 находят строку, значения которой совпадают с результатами серии пяти испытаний. Значение К и его знак находят на пересечении данной строки и одной из граф 2—5, для которой число 0 в подзаголовке а соответствует числу 0 результатов в Л^-серии; если первый результат серии NL был X, а первый результат серии из пяти испытаний был 0, то в графе б табл. 2.9 находят строку, значения которой совпадают с результатами серии пяти испытаний. Значение К Таблица 2.9. Данные для обработки, результатов измерений КИ
Таблица 2.10. Показатели точности измерения КИ Приближенное значение на 95 \ доверительном уровне Внутри лаборатории Между лабораториями Стандартное отклонение 0,2 0,5 Сходимость 0,5 — Воспроизводимость — 1,4 находят на пересечении данной строки и одной из граф 2—5, для которой количество X в подзаголовке б соответствует числу X результатов в Л^-серии. Знак К в этом случае заменяется противоположным. Данный метод определения КИ обеспечивает показатели точности, приведенные в табл. 2.10, для материалов, которые зажигаются без особых сложностей и спокойно горят. Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами. Метод определения опасности взаимного контакта веществ основан на механическом перемешивании испытуемых образцов в заданной пропорции и оценке результатов испытания. Для экспериментов используют: электрический сушильный шкаф вместимостью 4 дм3 с регулятором температуры, позволяющим поддерживать постоянную температуру рабочей зоны от 40 до 200 °С; двухзонную термопару малоинерционного типа ТХК с термоэлектродами диаметром 0,5 мм; потенциометр типа КСП-4 с градуировкой ХКбв, диапазоном измерения температур от 0 до 200 °С. Предварительные испытания веществ на способность взрываться и гореть при взаимодействии с другими веществами проводят путем контакта капли, кристаллика или небольшого количества порошкообразного вещества с таким же количеством другого вещества при комнатной температуре. Если при этом происходит энергичное взаимодействие (взрыв или самовоспламенение) веществ, то такие вещества являются несовместимыми. Если при контакте малых количеств веществ не происходит активного взаимодействия, то в последующих испытаниях исследуют двухкомпонент-ные смеси испытуемых веществ в стехиометрическом соотношении общим объемом до 20 см3. Для этого каждый из компонентов смеси помещают в отдельный тигель. Тигли с исследуемыми образцами устанавливают в термостат с заданной температурой испытания и выдерживают в течение 30 мин до выравнивания температур исследуемых веществ и термостата. В тигель (в котором будет производиться смешивание образцов) опускают один из рабочих концов термопары (другой рабочий конец измеряет температуру внутри термостата) и вливают (всыпают) вещество из другого тигля. Смесь перемешивают и по потенциометру наблюдают за показаниями термоэлектрического преобразователя в течение 1 ч. Если температура смеси не повышается, то испытание прекращают. Для каждой смеси веществ проводят не менее трех испытаний при температурах 20±2, 50±2 и 100 + 2 °С. Если при температуре испытания вещество переходит в другое агрегатное состояние, то испытание следует прекратить. Если температура смеси в каждом испытании не повысилась более чем на 0,5 СС, то вещества считают совместимыми в отношении пожарной безопасности и допускается их совместное хранение. Если температура смеси хотя бы в одном испытании повысилась более чем на 0,5 °С, то для окончательного вывода о совместимости определяют условия самовозгорания данных смесей. Нормальная скорость распространения пламени. Для определения нормальной скорости распространения пламени создают газо- или паровоздушную смесь сте-хиометрического состава, зажигают ее и оценивают скорость перемещения фронта пламени. Схема установки для определения нормальной скорости распространения пламени показана на рис. 2.20. Рис. 2.20. Установка для определения нормальной скорости распространения пламени: / — реакционная камера; 2 — смотровое окно; 3 — электроды зажигания; 4 — датчик давления; 5, 6, 8 — клапаны; 7 — манометр; 9 — кинокамера; 10 — мешалка; 11 —пульт управления; 12 — осциллограф; 13 — усилитель Горючее Окислитель Вместимость сферической реакционной камеры составляет 3—25 дм. Камера снабжена оптическим окном для наблюдения за процессом распространения пламени, вентилятором или электронагревателем для конвективного перемешивания смеси. На камере через клапан установлен ртутный манометр. В качестве зажигающего устройства используют электроды с искровым промежутком от 0,5 до 2,5 мм. Выделяемая в искре энергия должна быть не более 0,1 Дж. В установке используется датчик давления, который через усилитель соединен с осциллографом. Кроме того, установка содержит: трубопроводы с клапанами для подачи в камеру исследуемого вещества и воздуха; пульт управления, обеспечивающий синхронизацию момента зажигания смеси с началом регистрации процесса распространения пламени; хроматограф для анализа состава исследуемой смеси; вакуумный насос, обеспечивающий остаточное давление не более 1,0 кПа. Перед проведением испытаний реакционную камеру проверяют на герметичность. Для приготовления газовой смеси требуемого состава реакционную камеру вакуумируют до остаточного давления 1,0 кПа. Затем поочередно в камеру подают компоненты смеси по парциальным давлениям. После приготовления смесь перемешивают в течение 5± 1 мин, используя для этого вентилятор. Затем вентилятор отключают и через 5±1 мин проводят зажигание горючей смеси зажигающим устройством, искровой промежуток которого расположен в центре камеры. Момент срабатывания зажигающего устройства и изменение давления в камере от времени регистрируются осциллографом, а процесс распространения пламени — кинокамерой. С целью определения максимального значения нормальной скорости для конкретного горючего вещества испытания проводят на различных составах смеси, близких к стехиометрическому. Испытание смеси заданного состава повторяют не менее пяти раз. Из экспериментальной записи изменения давления от времени pk(tk) выбирают не менее пяти значений, удовлетворяющих условию (2.24) где pi — начальное давление в камере, Па; используют также точку р,(0), соответствующую моменту сраба- тывания зажигающего устройства; р„ — давление, соответствующее точке перегиба кривой изменения давления взрыва от времени, Па. Расчетное значение изменения давления взрыва в камере получают интегрированием дифференциального уравнения Su; (2.25) dt ф'/т._[(т._?4)я./т,1) в котором: , tt'/T"+[(yt-l)/(V*-l)] (1-я"*-')-! (2 2б) »Г1»<»-)> Ъ»=* (2.27)" V* Т»(Т«— 1) J V» —1 где K = p/pi — относительное давление; р — текущее расчетное давление в камере, Па; р, — начальное давление в камере, Па; t — время, с; а — радиус камеры, м; уи, уь — соответственно показатели адиабат смеси и продуктов сгорания; nu = tnu/mj — относительная масса смеси в камере; ти — текущее значение массы смеси, кг; т, — начальное значение массы смеси, кг; jie = pe/pi — относительное максимальное давление взрыва в камере; ре — максимальное давление взрыва в камере при начальном давлении р,, Па; Su — текущее значение нормальной скорости распространения пламени, м -с~'. Радиус пламени г* рассчитывают по формуле (в м) г»=(1—я„я-1/т«)1/3а. (2.28) Зависимость нормальной скорости от давления и температуры смеси принимают в виде Su = Sul(p/Piy (Ти/Т>Г, (2.29) где SUi — начальная скорость распространения пламени при начальных давлении и температуре, м-с~'; Ти — текущее значение температуры смеси, К; Т, — начальная температура смеси в камере, К; к — барический показатель; m — температурный показатель. В приближении адиабатического сжатия смеси Su = Su«n8, (2.30) где г = т-{-п — т/уи — термокинетический показатель. Входящие в расчетные формулы параметры уи, уь, яе определяют термодинамическим расчетом. При не- возможности использования ЭВМ для решения уравнений (2.25) и в отсутствие расчетных значений уь и л, для упрощения вычислений можно приближенно принять уь = Уи, а значение ле взять из экспериментальных данных. Вид расчетной зависимости p(t) определяется двумя неизвестными параметрами Su,- и е. Метод определения нормальной скорости [определение значений Sui и е согласно формуле (2.30)] основан на оптимизации расчетной зависимости давления взрыва от времени в сферической камере постоянного объема относительно экспериментальной записи давления. Оптимизацию расчетной зависимости изменения давления по экспериментальной зависимости осуществляют минимизацией функционала N Ф(в)= I [я*-я(Ь,вИ\ (2.31) где ©= II ^"'|| — вектор-столбец неизвестных параметров 9i =SUi, в2 = е, nk = pk/pi — экспериментальное относительное давление в момент времени /*; л(**,6) — расчетное относительное давление в момент времени tk\ N — выбранное число точек экспериментальной зависимости давления от времени. Минимизация функционала (2.31) производится итеративно, причем WL+i=WL+AW, (2.32) где L — номер итерации. Значение поправки Д0 определяют при каждой итерации из выражения где X=\\dn(tk,Qi)/dQ\\ —матрица размерностью 2N; Хт —транспонированная матрица Ж ~Z~=\\nk — пХ X (tk, ©L || — вектор-столбец размерностью М; (ХГ'Х)~1 — матрица, обратная матрице JFXl Транспонирование, перемножение и обращение матриц осуществляется по стандартным процедурам, имеющимся в библиотеках ЭВМ. Итерационный процесс прекращается при выполнении условия W (2.34) где 6 = 10-4(OL+10-3b_ Элементы матрицы X определяются численным интегрированием уравнения ЖШ.!п) <2-35> с начальными условиями l =0 „ В уравнении (2.35) символ / использован для обозна-, чения правой части уравнения_(2.25). Для определения элементов вектор-столбца Z необходимо численно интегрировать уравнение (2.25). Дальнейшая минимизация функционала (2.31) осуществляется варьированием начальной точки отсчета времени. Для этого уравнения (2.25) и (2.35) интегрируют с момента времени, находящегося в интервале ±20 мс относительно момента срабатывания зажигающего устройства. В результате определяют момент времени /*, которому соответствует минимальное значение^ функционала (2.31). Найденное при этом значение в является искомым. Доверительный интервал значений определенных параметров находится по формуле пл1 ammXnKS2F«(K, N-K), (2.36) где т, и =1,2 (индекс 1 соответствует параметру Sui, индекс 2 — параметру е); \J_mn т-й элемент п^го собственного вектора матрицы R=A ~1/2 (XrX~)~^A~U2W— диагональная матрица; m-й диагональный элемент которой равен^ атт\ атт — m-й диагональный элемент матрицы (XV()~l; Х„ — n-ое собственное значение матрицы R; /(= 2 — число параметров, по которым проводится оптимизация; F«(K, N — К) — табулированные значения критерия Фишера; а — доверительная вероятность; S2 — дисперсия экспериментальных данных; K). (2.37) Контроль правильности определения нормальной скорости распространения пламени методом оптимизации осуществляется сравнением экспериментальной и рас- четной зависимостей радиуса пламени от времени. Fr = S?/(gd), (2.38) где 5S — видимая скорость пламени, м«с~'; g — ускорение свободного падения, м-с~2; d — диаметр камеры, м. Аналогичная процедура определения SM,- и е выполняется для серии испытаний. По полученным результатам определяют среднеарифметические значения S°i и е° и среднеквадратичные отклонения для данных параметров. Для определения значений нормальной скорости в широком диапазоне давлений и температур проводят серии испытаний, различающиеся начальным давлением pi. Для каждой серии испытаний определяют значения S°,, e° и изменение нормальной скорости в течение взрыва по формуле (2.29). Температура смеси изменяется в течение взрыва по закону Гв = Г,-я<т«-1)/та. (2.39) Используя формулы (2.30), (2.39), строят серию изотерм на графике Su(p). Первую изотерму (Г„ = 7*,) строят по точкам S«,-(p,-), где значения р,—заданы, a SUi — определены методом оптимизации. Для построения следующих изотерм (7"u — const) по формуле (2.39) определяют относительное давление л и давление p — npi, при котором температура смеси равна выбранному значению Ти с различным начальным давлением. Определив значение л по формуле (2.30), находят значение нормальной скорости Su в каждом испытании, т. е. при одинаковой температуре Ти и различных давлениях р. Метод начального участка, применяемый для определения одиночных значений нормальной скорости пламени, заключается в том, что результаты испытаний, полученные по описанной выше методике, обрабатывают по начальному участку фоторегистрации распространения сферического пламени (в условиях пренебрежения конвекцией). Нормальную скорость распространения пламени Sm- определяют при начальных значениях давления и температуры в камере, используя только эксперимен- тальные данные. Расчет производят по формуле Sul- = S,/Ј/, (2.40) где Ss—видимая скорость распространения пламени, м-с~'; £, = 0,85 pe/pi — коэффициент расширения продуктов сгорания при начальных значениях давления и температуры; ре — максимальное давление взрыва в камере при начальном давлении />,-. Используя кинограмму распространения сферического пламени на начальном участке (до '/з радиуса камеры), определяют значение Ss по углу наклона прямой, выражающей зависимость радиуса пламени от времени его распространения. Коэффициент расширения продуктов сгорания £, определяют по экспериментальным данным — начальному pi и максимальному давлению взрыва ре в камере (по записи давления взрыва на осциллограмме). Допускается определять £, расчетным путем. Для определения нормальной скорости пламени в газовых смесях применяют также метод горелки. Установка (рис. 2.21) для шлирен-фотографирования конуса пламени на срезе сопла горелки содержит систему подачи окислителя и горючего и оптическую систему шлирен-фотографирования. Система подачи состоит из смесителя и линий подачи горючего и окислителя; в эти линии включены осушители, расходомеры, регулировочные и редукционные клапаны. Сопло горелки снабжено рубашкой водяного охлаждения. Оптическая система состоит из фотокамеры с фотопленкой и объективом, проволочки, линз, щели и источника излучения. Линзой 7 фокусируют изображение источника 8 на щель 6. Линзой 5 создают параллельный пучок лучей для просвечивания пламени и совместно с линзой 4 фокусируют изображение щели 6 на проволочку 3 таким образом, чтобы в отсутствие пламени свет от источника 8 не поступал на объектив фотокамеры 2. Объектив фотокамеры 2 и линза 4 фокусируют изображение конуса пламени на фотопленку /. Прорезь щели 6 и проволочку 3 располагают параллельно оси конуса пламени. По показаниям расходомеров 14 задают смесь требуемой концентрации и, зная площадь истечения на срезе сопла, устанавливают скорость истечения горючей смеси. В поток газа за смесителем подают с необходим
/ 2 J Рис. 2.21. Принципиальная схема установки для шлирен-фотогра-фирования конуса пламени: / — фотопленка; 2 —объектив фотокамеры; 3 — проволочка; 4, 5, 7 — линзы; 6— щель; 8 — источник излучения; 9 — сопло горелки; 10 — рубашка охлаждения сопла горелки; // — горелка; 12 — смеситель; 13 — осушители; 14 — расходомеры; 15 — регулировочное клапаны; 16 — редукционные клапаны мым расходом диспергированные твердую или жидкую фазы. Осуществляют зажигание смеси на срезе горелки. Производят шлирен-фотографирование конуса пламени. Нормальную скорость пламени рассчитывают по формуле Sui=Wsin(a/2), (2.41) где W — скорость истечения газа на срезе горелки, м-с~'; а — угол при вершине конуса пламени горелки. Значение W определяют по показаниям расходомеров, величину а — по шлирен-фотографии. Скорость выгорания. Для определения скорости выгорания зажигают образец вещества в реакционном сосуде и фиксируют убыль массы образца за определенный промежуток времени. Установка (рис. 2.22) имеет прибор СВ, представляющий собой два сообщающихся сосуда, выполненные из стекла. Один из них внутренним диаметром 10,0 rt ±0,2 мм, высотой 45±2 мм и толщиной стенки 1,0± ±0,1 мм служит горелкой, другой внутренним диаметром 50±2 мм, высотой 60±2 мм служит резервуаром Рис. 2.22. Установка для определения скорости выгорания жидкостей: / — прибор СВ; 2 — термометр; 3 — металлический противень; 4 — кронштейн; 5 — сетка; 6 — электрические весы; 7 — металлический поддон; 8 — нагревательный элемент для исследуемой жидкости. Сосуды сообщаются через соединительную трубку длиной 25 ±2 мм (размеры канала трубки 8X2 мм). Металлический противень длиной 125 ± ±5 мм, шириной 75 ±5 мм и высотой 35 ±5 мм заполнен песком. В него устанавливают прибор СВ при испытании. В установке использованы весы лабораторные электрические квадрантные с наибольшим пределом взвешивания 500 г; цена деления шкалы 100 мг. Металлический поддон диаметром 300±Ю мм установлен сверху на корпусе весов. По центру поддона имеется отверстие диаметром 150 ±5 мм для чаши весов. По периметру поддона расположена сетка высотой 600 ± 10 мм, позволяющая работать в вытяжном шкафу с включенной вентиляцией. Кронштейн позволяет устанавливать противень с песком и прибором СВ на чашу весов. Нагревательный элемент имеет спираль сопротивлением 0,9±0,1 Ом; подаваемое на спираль напряжение 12 ±2 В, сила тока 11 ±1 А. Лабораторный термометр может быть любого типа с пределом измерения от 0 до 200 °С и ценой деления 0,5 °С. Стеклянная пластинка служит для гашения пламени горелки после испытания. В резервуар прибора СВ заливают исследуемую жидкость (60 ± 10 см3) с таким расчетом, чтобы уровень жидкости в горелке был на 2,5±0,5 мм ниже верхнего края горелки. Уровень контролируется шаблоном. На чашу весов, используя кронштейн, устанавливают противень с песком и прибором СВ. Между горелкой и резервуаром с исследуемой жидкостью ставят алюминиевый экран. В резервуар опускают термометр, закрепленный в штативе. Нагревают жидкость до температуры Рис. 2.23. Зависимость ско- Скорость Выгорания, кг/(ме-мин) ростн выгорания жидкости от 25 времени горения воспламенения и зажи массы жидкости. Испы- ''ио* 5 Ю~ тания продолжают не время, мин менее 15 мин, затем пламя тушат, накрыв горелку стеклянной пластинкой. Испытания повторяют пять раз на том же образце, доливая в резервуар жидкость до необходимого уровня. Если после испытания жидкость изменила цвет или верхняя часть горелки покрылась копотью, то необходимо новый образец исследуемой жидкости залить в чистый прибор. Скорость выгорания UB рассчитывают по формуле (в кг/(м2-мин)] 1/. = Кт/т, (2.42) где К= 1273/d2 — постоянная прибора, м~2; d — внутренний диаметр горелки, м; m — масса жидкости, сгоревшей к моменту времени т, кг; т — время горения жидкости, мин. По полученным данным строят кривую зависимости скорости выгорания исследуемой жидкости от времени ее горения. За результат каждого испытания принимают максимальное значение скорости выгорания (рис. 2.23). За величину скорости выгорания исследуемой жидкости принимают среднее арифметическое максимальных значений скорости выгорания, полученных в пяти параллельных испытаниях. Линейную скорость выгорания и0 рассчитывают по формуле (в м/мин) С/о = £/„/Рж, (2.43) где рж — плотность жидкости, кг/м3. Коэффициент дымообразования. Для определения коэффициента дымообразования фотометрически регистрируют ослабление освещенности при прохождении света через задымленное пространство. На рис. 2.24 показана схема установки для определения коэффициента дымообразования. Камера сгора- 3 Пожаровзрывоопасность... Кн. 1 65
Рис. 2.24. Установка для определения коэффициента дымообразования: 1 — камера сгорания; 2 — держатель образца; 3 — электронагревательная панель; 4, 7 — клапаны продувки; 5 — дымовая камера; 6 — фотоэлемент; 8 — осветитель; 9 — кварцевое стекло; 10 — предохранительная мембрана; // — вентилятор ния вместимостью 3-10 3 м3 выполнена из листовой нержавеющей стали толщиной 2,0±0,1 мм. В ней имеются верхнее и нижнее отверстия сечением 30X160 мм, соединяющие ее с дымовой камерой. На боковой поверхности камеры сгорания расположено окно из кварцевого стекла для наблюдения за образцом при испытании. В камере сгорания установлены держатель образца и закрытая электронагревательная панель, смонтированная на верхней стенке камеры под углом 45° к горизонтали. Держатель образца выполнен в виде рамки размерами 100ХЮ0ХЮ мм и закреплен на дверце камеры на расстоянии 60 мм от панели параллельно ее поверхности. В держатель устанавливают вкладыш из асбосилита, в центре которого имеется углубление для размещения образца. Над держателем образца установлена газовая горелка. При испытании материалов в режиме горения пламя горелки касается поверхности верхней части образца. Дымовая камера размерами 800X800X800 мм выполнена из листовой нержавеющей стали. Внутренние стенки камеры оклеены черной бумагой. В верхней стенке и в днище камеры имеются отверстия для возвратных клапанов продувки, осветителя и предохранительной мембраны. Внутри камеры находятся устройство для вертикального перемещения фотоэлемента и двухлопастный вентилятор для перемешивания дыма. Испытания проводят в двух режимах: термоокисли- тельного разложения (тления) и пламенного горения. Режим термоокислительного разложения (тления) обеспечивается при нагревании поверхности образца до 400 °С, при этом плотность теплового потока равна 18 кВт/м2. Материалы, термостойкость которых выше 400 °С, испытывают при нагревании до 600 °С, плотность теплового потока равна 38 кВт/м2. Во всех случаях материалы не должны самовоспламеняться при испытании. Режим пламенного горения обеспечивается при использовании газовой горелки и нагревании поверхности образца до 750 °С, при этом плотность теплового потока равна 65 кВт/м2. Для измерения плотности теплового потока используют датчик металлокалори-метрического типа. При наладке установки определяют подаваемое на электронагревательную панель напряжение, обеспечивающее указанные режимы испытания. Для этого вставляют в держатель вкладыш с контрольным образцом из асбестоцемента (40Х40ХЮ мм), в центре которого укреплена термопара. Дверцу камеры сгорания закрывают и подают напряжение на спирали электронагревательной панели. Для контроля стабилизированных условий нагревания применяют потенциометр. При проведении испытания в режиме пламенного горения вставляют в держатель вкладыш с асбестоцемент-ным образцом, закрывают обе камеры, подают на спирали электронагревательной панели выбранное для данного режима напряжение. После выхода панели на стабилизированные условия нагревания включают осветитель, измерительный прибор люксметра, вентилятор перемешивания. Затем открывают камеру сгорания, вынимают вкладыш с асбестоцементным образцом, зажигают газовую горелку, камеру закрывают. Производят продувку дымовой камеры в течение 1 мин. Регулируют диафрагмами осветитель, установив освещенность 100 лк, и диаметр пучка света, равный диаметру1 светочувствительной поверхности фотоэлемента. Подготовленный образец испытуемого материала устанавливают во вкладыш, имеющий комнатную температуру, открывают дверцу камеры сгорания, без задержки вставляют вкладыш в держатель и закрывают дверцу. Продолжительность испытания определяется временем достижения минимальной освещенности, оно не более 15 мин. 3* 67 При испытании в режиме тления газовую горелку не зажигают, устанавливают вкладыш с асбестоцемент-ным образцом, подают соответствующее напряжение на электронагревательную панель. Порядок проведения испытаний аналогичен порядку, установленному для режима пламенного горения. Испытывают по пять образцов материала в каждом режиме. По результатам каждого испытания рассчитывают коэффициент дымообра-зования £)™ах по формуле где V — вместимость дымовой камеры, м3; L — длина светового пути в задымленном пространстве, м; m — масса образца исследуемого материала, кг; In (E/Emin) — оптическая плотность дыма; Е, Emin — соответственно начальная и минимальная освещенность, лк. Для каждой серии испытаний рассчитывают среднее арифметическое не менее пяти значений коэффициента дымообразования. За окончательный результат принимают наибольшее значение из двух средних арифметических. Индекс распространения пламени. Для определения индекса распространения пламени оценивают скорость перемещения фронта пламени по поверхности образца материала, помещенного в зону действия теплового излучателя. На рис. 2.25 представлена схема установки для измерения индекса распространения пламени. Радиационная панель размерами 250X470 мм нагревается горящим газом или электроспиралью. Газовая радиационная панель состоит из трех горелок инфракрасного излучения. Для увеличения мощности радиации перед панелью установлена сетка из жаростойкой стали. Электрическая радиационная панель состоит из двух секций размерами 250X235 мм. Держатель образца состоит из подставки и рамки, выполненной из листовой жаростойкой стали толщиной 0,8 мм. На длинные рейки рамки нанесены деления через каждые 30 мм и пронумерованы участки от нулевого до девятого сверху вниз. Газовая горелка установлена горизонтально между радиационной панелью и держателем образца на расстоянии 8 мм от поверхности образца, напротив середины нулевого участка. Горелка Рис. 2.25. Установка для определения индекса распространения пламени: / — стойка; 2 — подставка держателя образца; 3 — радиационная панель; 4 — рамка держателя образца; 5 — газовая горелка; 6 — вытяжной зонт; 7 — термоэлектрический преобразователь представляет собой трубку из жаростойкой стали, имеющую со стороны держателя образца пять отверстий диаметром 0,6 мм на расстоянии 20 мм одно от другого; на трубку надета металлическая сетка. Длина пламени горелки должна быть равной 11 мм. Имеются также: термопары типа ТХА; потенциометр типа КСП-4 с градуировкой XA6s; асбестоце-ментная плита длиной 320 мм, шириной 140 мм и толщиной не более 10 мм; регулятор напряжения с максимальной силой тока нагрузки 8А. Не нашли, что искали? Воспользуйтесь поиском:
|