Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА И ОСОБЕННОСТИ СРЕДСТВ ТУШЕНИЯ




Вода. Является наиболее широко применяемым средст­вом тушения пожаров различных веществ и материалов. К достоинствам воды, как средства тушения, относятся доступность, дешевизна, значительная теплоемкость, высокая скрытая теплота испарения, подвижность, хи­мическая нейтральность и отсутствие ядовитости.

Вода не только обеспечивает тушение многих объек­тов, но и, эффективно охлаждая их, защищает от возгорания соседние с горящим объекты.

К недостаткам воды относятся сравнительно высокая температура замерзания, недостаточная в ряде случаев (например, при тушении тлеющих материалов) сма­чивающая способность, сравнительно высокая электро­проводность (особенно в присутствии добавок против замерзания, смачивателей и др.), затрудняющая ту­шение установок под напряжением. Для понижения температуры замерзания в воду вводят антифризы (некоторые минеральные соли, гликоли). Чтобы повы­сить смачивающую способность воды, в нее вводят 0,5—2,0 % поверхностно-активных веществ (ПАВ) — сульфонаты, сульфонолы НП-1 и НП-3, смачиватели ДБ, НБ, ОП-7 и ОП-10, пенообразователи (ПО). Для уменьшения растекаемости в воду вводят добавки, по­вышающие ее вязкость (например, натрийкарбокси-метилцеллюлозу).

Воду нельзя применять для тушения веществ, бурно реагирующих с ней с выделением тепла, горючих, а также токсичных и коррозионно-активных газов. К та­ким веществам относятся многие металлы и металло-органические соединения, карбиды и гидриды металлов,


раскаленные уголь и железо. Нефтепродукты и многие другие органические жидкости при тушении водой могут всплывать на ее поверхность, увеличивая площадь по­жара.

В этом случае целесообразно применять распы­ленную воду. Характер дробления воды {размер капель) должен подбираться с учетом температуры вспышки жидкости. Следует помнить, что при тушении водой масел и жиров могут происходить выброс или раз­брызгивание горящих продуктов. Нельзя также приме­нять для тушения горючих пылей сплошные струи воды во избежание образования взрывоопасной среды. В этом случае надо применять распыленную воду со смачивателем.

Для определения возможности тушения водой (а так­же пенами и другими средствами на водной основе) веществ и материалов проводятся специальные испы­тания (см. разд. 4).

Кратная сводка веществ и материалов, для тушения которых нельзя применять воду и составы на ее основе, приведена в табл. 3.2.

Таблица 3.2. Вещества и материалы, для тушения которых нельзя применять воду а составы на ее основе


Вещество клн материал


Характер взаимодействия с водой


Алюминийорганические соединения, Реагируют со взрывом
щелочные металлы

Литнйорганические соединения, Разложение с выделением горю-

азид свинца, карбиды многих ме- чих газов
таллов, гидриды ряда металлов
(Al, Zn, Mg)

Серная кислота, термит, хлорид Сильный экзотермический эф-

титана фект

Гидросульфит натрия Самовозгорание

Битум, жиры, масла, петролатум Усиление горения, разбрызги­
вание, вскипание, выброс

Пены. Широко используются при тушении пожаров на промышленных предприятиях, складах, нефтехрани­лищах и т. п. Пены представляют собой коллоидные системы, состоящие из пузырьков газа, окруженных пленками жидкости, и характеризуются агрегативной и термодинамической неустойчивостью. Для получения


пен к воде добавляют ПО и пенопорошки, в качестве которых применяют некоторые природные и синтети­ческие ПАВ. Кроме того, для повышения устойчивости, морозостойкости и других показателей вводят различ­ные стабилизаторы и добавки. К достоинствам пен как средств тушения относятся: существенное сокращение расхода воды, возможность тушения больших площа­дей, повышенная (по сравнению с водой) смачивающая способность. Особенно важно то, что в отличие от большинства других средств при тушении пенами не требуется одновременное перекрытие всего зеркала горения (или большей его части), поскольку пена спо­собна растекаться по поверхности горящего материала.

Пены характеризуются кратностью, дисперсностью, вязкостью и т. д. Наиболее важной характеристикой является кратность пены, под которой понимают отно­шение объема пены к объему ее жидкой фазы.

В зависимости от способа и условий получения сгне-тушащие пены подразделяются на химическую и воз­душно-механическую различной кратности. Химическая пена образуется при взаимодействии растворов кислот и щелочей в присутствии ПО. Химическую пену при­меняют редко.

Для получения воздушно-механической пены тре­буются специальная аппаратура и водные растворы ПО. Воздушно-механическая пена подразделяется на низкократную (кратность до 30), среднекратную (30— 200) и высокократную (> 200). Наиболее широкое при­менение находит пена средней кратности (70—150). Для получения воздушно-механических пен применяют следующие ПО: ПО-1 (ГОСТ 6948—81), представляю­щий собой раствор нейтрализованного керосинового контакта Петрова (натриевые соли сульфокислот) с до­бавками костяного клея и этанола или этиленгликоля, пригоден для тушения пожаров классов А и В (кроме полярных соединений); ПО-1Д (ТУ 3810799—81) — раствор алкиларилсульфоната (назначение см. ПО-1); ПО-lc (ТУ 3820767—83) — это ПО-1Д с добавкой аль-гината натрия и спиртов фракции Сю — Ci2, пригоден для тушения пожаров классов А и В (в том числе для тушения этанола и других полярных веществ, в связи с большим расходом применяется редко); ПО-ЗАИ (ТУ 3810923—75) —раствор вторичных алкилсульфа-тов (назначение см. ПО-1), обладает пониженной


коррозионной способностью; ПО-6К (ТУ 3810740) — раствор смеси натриевых солей сульфокислот (назна­чение см. ПО-1); ПО «ТЭАС» (ТУ 107127—82) — обладает биоразлагаемостью, можно использовать для тушения нефтепродуктов и твердых материалов (для пожаров классов А и В); ПО «САМПО» (ТУ 10950— 78) — обладает повышенной огнетушащей способно­стью, биоразлагаем, пригоден для тушения пожаров классов А и В; ПО «Форэтол» (ТУ 6-02-780—86) — на основе фторированных ПАВ, пригоден для тушения пожаров класса В (в том числе полярных жидкостей — спиртов, эфиров и т. п.) без разбавления (в отличие от ПО-1С), характеризуется наиболее высокой огнету­шащей способностью; ПО универсальный (ТУ 6-02-2-890—86) — на основе фторированных ПАВ, применяет­ся при тушении различных, в том числе полярных, жидкостей.

Концентрация раствора 10 %.

Следует иметь в виду, что воздушно-механическая пена, полученная с использованием ПО на основе алкил-арилсульфонатов, например натриевых солей сульфо­кислот (называемых в дальнейшем «обычными» ПО, в отличие от фторосодержащих), быстро разрушается на полярных органических жидкостях и поэтому не может применяться для их тушения. Для тушения по­лярных жидкостей следует применять пену, получаемую при помощи ПО на основе фторированных ПАВ («форэтол», универсальный). К полярным, обусловли­вающим разложение пен на основе обычных ПО (ПО-1Д, ПО-6К, ПО-ЗАИ, Сампо), относятся следую­щие вещества:

Кислоты R — С— ОН Кетоны R— С—R'

II II

О О

Спирты R —СН2—ОН Простые эфиры R—О—R'

Альдегиды R —С —Н Сложные эфиры R —С—OR'

II It

О о

Амины R —NH2

В частности, к ним относятся: ацеталь, ацетальдегид, уксусный ангидрид, ацетоацелинид, ацетон, акриловая кислота, алдол, анилин, бутилкарбитол, бутилкрезол, бутилдиэтаноламин, бутиленгликоль, гидропероксид бу­тила, хлорацетофенон, хлорнитропропан, я-крезол,


циклогексанон, гидразин, диметилгидразин, диоксан, эпихлоргидрин, этаноламин, этиленгликоль, фурфурол, метакриловая кислота, метилформиат, фенол и др. Нормативную интенсивность подачи пены при туше­нии жидких горючих в резервуарах устанавливают по зависимости

/„ = 2,3/хр, (3.2)

где /кр — критическая интенсивность, определяемая из опыта.

Минимальная интенсивность подачи растворов ПО передвижными средствами тушения пожаров класса В составляет [в кг/(м2-с)]: 0,08—ПО-1, ПО-1Д, ПО-6К, ПО-ЗАИ, ПО «ТЭАС»; 0,05 — ПО «Сампо», 0,3—ПО-1с (при тушении эталона); 0,15 — ПО «ФОРЭТОЛ» и ПО универсальный при тушении этанола и других по­лярных жидкостей и 0,05 — для других ЛВЖ.

При устройстве стационарных (в том числе автома­тических) установок тушения воздушно-механической пеной нормативная интенсивность подачи раствора ПО (согласно СНиП 2.04.09—84) в зависимости от условий составляет 0,08—0,4 кг/(м2-с).

Инертные разбавители. В качестве инертных разбави­телей используют газообразные диоксид углерода, азот, аргон, дымовые газы, водяной пар. Горение большинст­ва веществ прекращается при снижении содержания кислорода в атмосфере защищаемого объема до 12— 15% (об.). Для веществ, характеризуемых широкой концентрационной областью распространения пламени (водород, ацетилен, диборан и др.), металлов, тлеющих материалов предельное содержание кислорода состав­ляет 5 % и ниже.

Наиболее широкое применение из указанных газо­образных разбавителей находит диоксид углерода. Его используют в стационарных установках (объемно­го тушения), в ручных (ОУ-2, ОУ-5, ОУ-8) и возимых (УП-2М) огнетушителях. Особенностью диоксида угле­рода является его способность при дросселировании образовывать хлопья «снега». При поверхностном ту­шении «снежным» диоксидом углерода его разбавляю­щее действие дополняется охлаждением очага горения.

Если нельзя применять диоксид углерода (например, при горении металлов и некоторых других веществ), используют азот или аргон. Аргон применяют тогда, когда имеется опасность образования взрывчатых


Таблица 3.3. Значения коэффициента Кг, учитывающего вид горючего

 

Материал Кг Материал Кг
Алканы 1,0 Порошок пластмасс 2,0
Ацетилен 2,5 Пыль бурых углей 1.5
Ацетон 1,0 Пыль древесная (древесная 1,5
Бензол 1,1 мука)  
Бумага 2,25 Пыль каменноугольная 1.5
Водород 3,15 Пыль каучуковая 1,5
Дизельное топливо 1,0 Серный эфир 1,45
Керосин 1,0 Спирт метиловый 1.6
Масла 1,0 Спирт этиловый 1.3
Полистирол 1,0 Хлопок 2,0
Полиуретан 1,0 Целлюлозусодержащий 2,25

нитридных соединений (например, нитридов некоторых металлов).

Огнетушащая концентрация диоксида углерода для большинства горючих веществ составляет от 20 до 40 %. Нормативная величина расхода СОг при объем­ном тушении составляет 0,7 кг на 1 м3 защищаемого помещения; при расчете установок пожаротушения эту величину умножают на коэффициент Къ, учитывающий вид горючего (табл. 3.3.).

Требуемый для стационарных установок объемного тушения запас диоксида углерода m рассчитывают по формуле (в кг)

т=1,1К2 1Кз(А1+30А2)+0,7У], (3.3)

где /Сз — коэффициент, учитывающий утечку СОг через неплотности (принят равным 0,2 кг/м2); А\ и А2 — суммарные площади ограждающих конструкций и от­крытых проемов соответственно, м2; V — объем помеще­ния, м3.

Время подачи СОг по нормам принимают от 60 до 120 с.

Диоксид углерода (как и многие другие средства) недостаточно эффективен при тушении глубинных по­жаров тлеющих материалов. Для тушения таких мате­риалов целесообразно добавлять к СО2 хладоны (см. ниже). Небольшие добавки СО2 [до б % (об.)] к азоту позволяют существенно повысить эффективность по­следнего при объемном тушении щелочных металлов.

Хладоны. Хладоны — это товарное наименование


предельных галогенуглеводородов, в молекулах кото­рых обязательно имеются атомы фтора, а также могут быть все остальные галогены (ранее назывались фре-онами). Для пожаротушения используют обычно бром-содержащие, а также бромхлоросодержащие хладоны.

Основу хладонов, применяемых для пожаротушения, составляют алканы с числом атомов углерода от 1 до 3. По принятой в СССР номенклатуре хладоны обозна­чают следующим образом: первая цифра — число ато­мов углерода в молекуле минус единица, вторая — число атомов водорода плюс единица, третья — число атомов фтора; бром (а также иод) обозначают буквой В (или I) и цифрой, соответствующей числу атомов Вг (или I); число атомов хлора определяется по числу оставшихся в молекуле незаполненных (свободных) связей. Например, дифторхлорбромметан (CF2CIBr) обозначается как хладон 12В1.

Хладоны в отличие от водо-пенных средств и инерт­ных разбавителей являются ингибиторами горения, т. е. веществами, способными активно вмешиваться в хими­ческие процессы, тормозя их. Наиболее эффективно хладоны тормозят горение органических веществ (неф­тепродуктов, растворителей и др.) и значительно слабее тормозят горение водорода, аммиака и некоторых дру­гих веществ. Хладоны неприемлемы для тушения ме­таллов, многих металлоорганических соединений, некоторых гидридов металлов, а также тогда, когда окислителем при пожаре является не кислород, а другие вещества (например, галогены, оксиды азота).

Механизм огнетушащего действия хладонов заклю­чается в торможении цепного процесса, происходящего при горении, что обусловлено связыванием активных центров (преимущественно атомов водорода). Физико-химические свойства хладонов, наиболее широко приме­няемых для пожаротушения, даны в табл. 3.4.

Как следует из данных табл. 3.4, по огнетушащей способности хладоны 114В2 и 13В1 близки, а хладон 12В1 несколько уступает им. Хладоны используют в основном в установках объемного тушения и флегмати­зации, а также в ручных огнетушителях. Возможность применения хладонов в качестве средств объемного тушения и флегматизации обусловлена легкостью обра­зования газовой фазы, высокой плотностью паров, хорошими диэлектрическими свойствами, низкими тем-


Таблица 3.4. Физико-химические свойства пожаротушащих

хладонов


Физико-химические свойства


CF3Br


C2F4Br2


CF2CIBr


Номер хладона 13В1 114В2 12В1

Молекулярная масса 148,93 259,89 165,4
Температура, °С:

кипения —57,8 47,5 —4,0

замерзания —168,0 —110,5 —160,5

Давление пара при 20 °С, 1480 38 266
кПа

Плотность жидкости, г/см3 1,575 2,18 1,83

Плотность пара, кг/м3 6,2 10,9 6,9

Вязкость при 20 °С, Па-с/м2 160 762,520

Температура самовоспл., °С 695 542 Не опред.

Огнетушащая концентрация 220—250 195—220 255

для нефтепродуктов, кг/м3 (1,9—2,2) (3,0—3,1) (3,5)
(% об.)

пературами замерзания и др. Хладоны обладают срав­нительной низкой коррозионной активностью и умерен­ной токсичностью (особенно хладон 13В1, относящийся к наименее вредным веществам группы 6).

Для огнетушителей используют хладоны 114В2 и 12В1. Хладон 13В1 применяют в качестве пропеллента (например, в огнетушителях типа ОАХ-0,5). Хладоны 13В1, 114В2 и 12В1 относятся к трудногорючим вещест­вам, поскольку способны самовоспламеняться в воздухе (при температурах выше ~550—600 °С), но не имеют пределов распространения пламени. Самовоспламене­ние хладонов наблюдалось лишь в специальных опытах, и потому практически их следует считать негорючими (более подробно пожароопасные свойства хладонов см. в разд. 5).

Следует помнить, что в кислороде пары хладона 114В2 становятся горючими, имеющими пределы рас­пространения пламени. Хладоны успешно используют для защиты вычислительных центров, окрасочных отде­лений и камер, музеев, архивов, машинных залов и т. д. Масса m хладона 114В2, требуемая для расчета систем объемного тушения, определяется по формуле (в кг)

т = К<7„/С+/п,Ц-т2 + тз, (3.4)

где V — объем помещения, м3; qn — нормативная огне­тушащая концентрация, равная 0,37 кг/м3 для поме­щений категорий А и Б по пожароопасности и


0,22 кг/м3 — для категории В; К — коэффициент, учи­тывающий потери хладона в трубопроводах и в резуль­тате утечек (принимается равным 1,2 для помещений, 1.1 для подполий); т\ —остаток хладона в баллонах, кг; £ — число баллонов; т2 — остаток хладона в рас­пределительных трубопроводах (для кабельных подпо­лий), кг; т3 — остаток хладона в коллекторе, кг.

Во ВНИИПО для установок пожаротушения хладо-ном 13В1 разработаны самостоятельные рекомендации («Рекомендации по проектированию установок пожаро­тушения хладоном 13В1» М., ВНИИПО, 1985), учиты­вающие требования международного стандарта «Авто­матические системы пожаротушения, использующие хладон», 1982 г. Некоторые из этих рекомендаций, необходимые в качестве исходных для проектирования систем объемного тушения, изложены в разд. 4.

По СНиП 2.04.09—84 время подачи хладонов в зави­симости от категории помещения по пожаро- и взрыво-опасности принято от 60 до 120 с, по указанным выше «Рекомендациям» — 30 с. Необходимо отметить, что результатами специальных исследований оптимальное время установлено равным 10 с. Такая продолжитель­ность подачи хладонов при объемном тушении хорошо согласуется с последними зарубежными нормами.

Порошки. Огнетушащие порошки представляют со­бой мелкоизмельченные минеральные соли с различны­ми добавками, препятствующими слеживанию и комко­ванию. В качестве основы для огнетушащих порошков используют фосфорноаммонийные соли (моно-, диаммо-нийфосфаты, аммофос), карбонат и бикарбонат натрия, хлориды натрия и калия и др. В качестве добавок — кремнийорганические соединения (например, аэросил AM-1-300), стеараты металлов, нефелин, тальк и др.

Эти порошки обладают высокой огнетушащей способ­ностью и обеспечивают, например, тушение пожаров класса В на большой площади в течение нескольких секунд. К достоинствам порошков также относятся: возможность их применения для тушения пожаров любых классов (которые невозможно тушить водой и другими средствами, например металлы), разнообразие способов пожаротушения (стационарные установки, огнетушители, автомобили, флегматизация, взрывопо-давление), возможность тушения электрооборудования под напряжением и др.

4 Пожаровзрывоопасиость... Кн. I 97


Таблица 3.5- Основные сведения об огнетушащих порошках

 

Порошок (марка*) Основной компонент Область применения классы пожаров) Огнетуша-щая способ­ность, кг/мг
ПСБ-3 ■Бикарбонат натрия :ВСЕ 1,6
ПФ Диаммонии фосфат АВСЕ 4,4
ПС Карбонат натрия D)  
П.2АП Аммофос АВСЕ ■ЛЛ
Пирант А у. АВСЕ .1,8
ПГС-М Смесь хлоридов ка- BCD '26D
  лия и натрия   1;4ВС
СИ-2 Силикагель, насы- ;D (металлорганиче* 20— 32D
  щенный хладоном ские соединения, ги- 0,2В
  114В2 дриды металлов)  
PC Графит, вспучиваю- D (сплав калия и •6;0—&,0
  щийся при нагреве натрия)  
MFC Графит с понижен- D (для натрия или- 2\й —10,0
  нной плотностью тия)  

Механизм огнетушащего действия порошков заклю­чается в ингибировании горения в результате связы­вания активных центров цепных реакций, протекающих в пламени. Происходит либо гетерогенная рекомбина­ция этих центров на поверхности порошков, либо гомо­генное взаимодействие газообразных продуктов воз­гонки порошков с активными центрами.

Огнетушащая способность порошков зависит не толь­ко от химической природы порошков, но и от степени их измельчения. Чем мельче частицы порошков, тем больше их поверхность и тем выше их эффективность. Но возможность приготовления и применения очень тонких порошков ограничена. Оптимальный размер порошков общего назначения (ПСБ, ПФ, ПГС и т. п.) составляет 40—80 мкм.

Порошки хранят в специальных упаковках, предохра­няя их от увлажнения, и подают в очаг горения сжатыми газами. Порошки не обладают токсичностью, мало агрессивны, сравнительно дешевы, удобны в обращении. Основные сведения о применяемых в нашей стране порошках приведены в табл. 3.5 (кроме указанных по­рошков для тушения некоторых веществ класса D при­меняют порошок фторида кальция; рекомендации по его применению изложены в разд. 4).

Комбинированные составы. Комбинированные — это огнетушащие составы, в которых сочетаются свойства различных огнетушащих средств. Наиболее эффектив-


ными являются такие составы, которые представляют собой комбинации носителя с сильным ингибитором горения. К ним относятся, например, водно-хладоновые эмульсии и комбинации воздушно-механической пены с хладонами. К комбинированным можно отнести также-порошок СИ-2.

Для объемного тушения разработаны азотно-хла-доновый и углекислотно-хладоновый составы, обеспе­чивающие 4—5-кратное снижение удельного расхода дорогостоящих и дефицитных бром-хладонов. Особенно перспективен состав, содержащий 85 % (масс.) ССЬ и-15 % (масс.) хладона 114В2. Этот состав рекомендуется СНиП 2.04.09—84. К его достоинствам относится взаим­ная растворимость компонентов при указанных соотно­шениях в конденсированной фазе (под давлением). При этом обеспечивается возможность хранения соста­ва в одном баллоне, что значительно упрощает и уде­шевляет его применение. Расчетная масса состава т определяется по формуле (в кг)

(3.5)

где К — коэффициент, учитывающий негерметичность помещения; V — объем помещения, м3; qn — норма подачи, равная 0,27 кг/м3 при т = 30 с и 0,4 кг/м3 при т = 60 с.

Для объемного тушения в помещениях с натрием разработан комбинированный состав, содержащий 94 % (об.) азота и 6 % (об.) диоксида углерода. До­бавка диоксида углерода к азоту обусловливает сниже­ние пирофорности натрия (увеличение его температуры самовоспламенения) и увеличение огнетушащей способ­ности азота.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных