Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Раздел III ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ




Тема 6 Функции нескольких переменных

 

Функции двух и нескольких переменных. Частные производные и техника дифференцирования. Экстремум функции двух переменных и его необходимое условие. Понятие об эмпирических формулах и методе наименьших квадратов. Построение методом наименьших квадратов линейной функции по эмпирическим данным (вывод системы нормальных уравнений). (1, гл. 15, § 15.1, 15.3, 15.6, 15.8; с. 397–400, 404–406, 410–413); (2, гл. 15).

При изучении этой темы необходимо проводить сравнение с функциями одной переменной и по аналогии определять область определения, но только множеством точек плоскости, а также графики в виде поверхности в пространстве (1, пример 15.2, с.400).

При определении частной производной необходимо использовать понятие частного приращения.

Техника дифференцирования функции двух переменных включает те же правила и принципы, которые использовались для нахождения производных функций одной переменной (1, пример 15.7, 15.8, с.405–406).

Метод наименьших квадратов имеет большое прикладное значение в экономических исследованиях.

Эмпирическая формула включает неизвестные переменные, а критерием ее точности является функция этих параметров, то есть функция нескольких переменных.

Критерий минимизируют, то есть находят экстремум функции нескольких переменных, получают с помощью метода наименьших квадратов формулу, которая является приближением с заданной точностью таблично заданной функции (1, пример 15.11), (2, с.363 –368).

Необходимо обратить внимание на оценку погрешности приближения.

Разобрать задачи с решениями (1, N15.7, 15.9, 15.13), для самостоятельного решения (1, N 15.23–15.32, 15.39).


Таблица соотношения начальной буквы фамилии студента и варианта контрольных заданий

Начальная буква фамилии Вариант задания
А, Е, Л Первый
Р, Х, Э Второй
Б, Ж, М Третий
С, Ц, Ю Четвертый
В, З, Н Пятый
Т, Ч Шестой
Г, И, О Седьмой
У, Ш Восьмой
Д, К, П Девятый
Ф, Щ, Я Десятый






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных