Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Элементы кодирования и теории информации




Кодом называют таблицу, в которой каждому знаку алфавита ставится в соответствие набор двоичных элементов (их условно обозначают 1 и 0) - кодовая комбинация. При технической реализации системы передачи цифровой информации элементам кода 1 и 0 соответствуют два различных сигнала, например, прямоугольный импульс положительного напряжения длительностью to секунд и импульс отрицательного напряжения (или пауза) той же длительности. Различают неравномерные и равномерные коды. Примером неравномерного кода является код Морзе - знаки алфавита кода Морзе имеют разную длину, причем часто встречающиеся знаки имеют короткие кодовые комбинации, редко встречающиеся - более длинные. Например, букве "е" соответствует точка, т.е. символ "1" - импульс длительностью tо, букве "а" - точка, пауза длительностью tо и тире, длительность которого равна 3 tо (рис.2.2). Такая структура кода обеспечивает экономию времени при передаче сообщения (так как часто встречающиеся знаки кодируются короткими кодовыми комбинациями, а редко встречающиеся - длинными) и имеет музыкальную окраску, что облегчает прием сообщения на слух, но неудобна при автоматическом приеме с помощью специальных технических устройств.

Пример кодовых комбинаций кода Морзе (однополярные посылки)

 

1 1 0 1 1 1

"е" ® · "а" ·

tо tо 3tо

Рис.2.2

В существующих устройствах автоматического приема и регистрации дискретных сообщений (буквопечатающие телеграфные аппараты, принтеры или дисплеи ПК) используются равномерные коды, в которых каждая кодовая комбинация содержит одинаковое число элементов. Это число элементов k называют длиной кодовой комбинации. Минимальная длина кодовой комбинации kмин определяется из условия

 

kмин = log2 N, где N - число знаков, передаваемое кодом.

Каждый двоичный элемент кодовой комбинации (1 или 0)содержит определенное количество информации, равное 1 биту (bit - bi nary digi T), скорость передачи информации измеряется в значениях бит/с. При длительности сигналов to скорость передачи информации составит B = 1/to бит в секунду. Например, при to = 20 мс В = 50 бит/с. (Очевидно, что при передаче только информационных сигналов 1 бит/с численно равен 1 Боду).

Уровни напряжения сигналов, соответствующих 1 и 0, и скорость передачи являются характеристиками цифровых сигналов во временной области.

Рассмотрим примеры кодов, используемых в радиосвязи.

 

Код Бодо (МТК-2)

В настоящее время организована и функционирует международная телеграфная сеть, служащая для передачи буквенно-цифровых сообщений (телекс). В качестве оконечных устройств ввода-вывода сообщения в телеграфной сети используются телеграфные буквопечатающие аппараты ТА. В ТА применяется код Бодо, который также называют Международным телеграфным кодом N 2 (МТК-2 - ITA -2). Код Бодо является 5-элементным, т.е. с его помощью можно составить 25=32 кодовые комбинации (рис.2.3). Для расширения возможностей кода используются специальные комбинации, которые называют буквенными регистрами (латинские буквы и русские буквы - в телеграфных аппаратах, приспособленных для сообщений на русском языке) и цифровым регистром. В результате одна и та же кодовая комбинация используется для формирования знаков русского, латинского алфавитов или цифр в зависимости от выбранного регистра. Например, кодовой комбинации 10011 в русском регистре соответствует буква Б, в латинском - буква В, в цифровом - знак?. При передаче сообщений с помощью ТА необходимо выбирать соответствующий регистр.

Пример кодовой комбинации кода МТК-2 (двухполярные посылки)

1 0 0 1 1

+U

 

t

to to to to to

- U Рис.2.3

Код ASCII

Американский стандартный код для обмена информацией ASCII (American Standart

Code for Information Interchange) - используется в современных ЭВМ – персональных компьютерах ПК. Он состоит из 7 информационных элементов. 7 информационных элементов (бит) создают 27=128 комбинаций, что позволяет закодировать цифровые знаки, латинские строчные и прописные алфавитные знаки, а также ряд дополнительных графических символов.

Так как обмен данными в ПК осуществляется кодовыми словами - байтами (1 байт = 8 бит), то оставшийся восьмой бит может использоваться для различных служебных целей - или для обнаружения в принятом байте ошибки путем проверки на четность, или для увеличения числа знаков, так что можно создавать специальные символы национального алфавита, которые используются в том или ином регионе (символы ASCII кода с номерами от 128 до 255).

 

Принципы построения кодов с обнаружением ошибок

Рассмотренные выше коды, используемые для передачи дискретной информации (МТК-2, ASCII), не способны автоматически обнаруживать возникающие из-за помех ошибки. В результате при неверном приеме двоичных сигналов возникают ошибки в регистрируемой информации (например, если при передаче буквы "А" в коде МТК-2 (комбинация 11000) из-за помехи пятый элемент будет принят неверно (принята комбинация 1100 1) приемник зарегистрирует букву "В". Для борьбы с ошибками в современных системах связи используют т.н.помехоустойчивые коды, способные обнаруживать или исправлять ошибки. Для обнаружения ошибок в коды вводят избыточность - увеличивают длину кодовой комбинации - к информационным элементам добавляют проверочные, которые формируют по определенным правилам. На приемной стороне принятая кодовая комбинация обрабатывается для проверки выбранного правила. Нарушение правила кодообразования свидетельствует о наличии ошибки в принятой кодовой комбинации. Наиболее простым кодом, способным обнаруживать ошибки, является код с четным числом "1". Для получения такого кода к исходной комбинации добавляют один элемент - 1 или 0 - так, чтобы суммарное число единиц оказалось четным. Например, для исходной комбинации 11000 кодовая комбинация четного кода имеет вид - 110000. При возникновении ошибки, например, в пятом элементе - 1100 1 0 число единиц окажется нечетным. Специальное устройство в приемнике, подсчитав число единиц, обнаружит ошибку и "забракует" эту комбинацию. Аналогичным образом можно построить код с нечетным числом единиц. Такие коды с проверкой на четность (check parity) применяют при обмене данными между ПК. Заметим, что этот код не способен исправлять ошибки - для получения правильной информации необходимо организовать повторную передачу кодовых комбинаций, принятых с ошибкой. К тому же при возникновении в кодовой комбинации, например, двух ошибок устройство эти ошибки не обнаружит. Например, если в принятой комбинации ошибки возникнут на 3 и 5 позициях - 11 1 0 1 0 число единиц сохранится четным и приемник зарегистрирует букву "Я", соответствующую комбинации 11101 в коде МТК-2.

Для обнаружения двойных (и более) ошибок и для автоматического исправления ошибок используют более сложные коды. Например, в морской радиосвязи используют 7-элементный код 3:4, в котором каждая кодовая комбинация имеет 3 "единицы" и 4 "нуля" (например, 1001001, 1101000, 1100100). Из общего числа 27 семиэлементных комбинаций такому правилу соответствуют 35 комбинаций. На приемной стороне специальное устройство "проверяет" соотношение 3:4 и если оно не выполняется, комбинация "бракуется". Таким образом предотвращается прием ошибочной информации. Для получения верной информации используются различные алгоритмы (методы): автоматический запрос на повторение информации, двукратное дублирование кодовых комбинаций). Подобный код используется в системе морского радиотелекса, который является составной частью аппаратуры ГМССБ.

 

Спектры сигналов

 

Физические сигналы обычно описываются функциями времени. Однако, при передаче информации с помощью гармонических электромагнитных волн удобно представлять сигналы в частотной области. Связь между представлениями сигналов во временной и частотной областях определяется известным преобразованием Фурье

¥ ¥

X(w) = ∫S(t)·℮- jwtdt, S(t) = [1/(2p)]·∫ X(w)·℮ jwt dw

-¥ -¥

где w=2pf – угловая частота

Функция X(f) называется спектром сигнала S(t). Физический смысл спектра заключается в том, что он определяет совокупность гармонических составляющих (с заданными амплитудами и частотами), формирующих заданную форму сигнала во временной области. В общем случае спектр сигналов, ограниченных во времени, бесконечен, т.е. для получения заданной формы сигнала необходимо бесконечно большое число гармоник, однако амплитуды гармоник падают с ростом частоты. Это позволяет ограничить реальный спектр некоторой полосой частот, достаточной для обеспечения воспроизведения сигналов с требуемой точностью. Обычно в качестве критерия выбора занимаемой полосы частот принимают заданный уровень энергии за пределами этой полосы (например, 1 процент от общей мощности сигнала). На рис. 2.4 показаны характеристики прямоугольных импульсов во временной и частотной областях.

Очевидно, что для достаточно точного воспроизведения формы импульса достаточно 3 гармонических составляющих основной частоты 1/to. Реальная полоса частот прямоугольного импульса длительностью to, определяется соотношением ∆f = (1...3)/to. Например, в полосе частот (0...1/to) сосредоточено 90% энергии, в полосе (0...2/to) - 95% энергии, в полосе (0...3/to) - 97% энергии сигнала.

 

Характеристики сигналов во временной и частотной областях

Рис.2.4

 

Спектр звуковых сигналов, воспринимаемых человеком, содержит гармонические составляющие от 20 Гц до 20000 Гц, однако, уровень частотных составляющих на нижнем и верхнем участках частот пренебрежимо мал по сравнению с амплитудами частот в середине частотного диапазона. Поэтому, без ущерба для разборчивости речи диапазон частот речевого сигнала в телефонных сетях ограничивают полосой 300...3400 Гц (в США 300...3300 Гц).

(В морской радиосвязи в соответствии с требованиями Регламента радиосвязи в КВ-диапазоне верхняя частота телефонного сигнала не должна превышать 3000 Гц).

 

Модуляция

 

Спектры сигналов, вырабатываемых терминалами (микрофонами, буквопечатающими ТА, ЭВМ) лежат в области низких частот. У цифровых сигналов основная энергия приходится на "нулевую" частоту, т.е. постоянную составляющую сигнала (см. рис.2.3), поэтому такие сигналы часто называют сигналами постоянного тока. Ток низких частот свободно распространяется по проводникам (физическим проводам), но излучение и прием электромагнитных волн на этих частотах чрезвычайно затруднен. Для передачи сигналов на большие расстояния с помощью электромагнитных волн необходимо перенести спектр низкочастотного сигнала в область высоких частот (радиочастот). Этот перенос спектра называют модуляцией, которая осуществляется с помощью модулятора. Суть модуляции заключается в том, что один из параметров высокочастотного гармонического колебания (его называют несущим колебанием, а частоту – несущей частотой) изменяется по закону низкочастотного (управляющего) сигнала, содержащего передаваемое сообщение. В соответствии с параметрами гармонического колебания различают амплитудную, частотную и фазовую модуляцию.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных