ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Краткие сведения из теории. Протекание тока в вакууме можно рассмотреть на примере вакуумной двухэлектродной лампы (вакуумного диода)Протекание тока в вакууме можно рассмотреть на примере вакуумной двухэлектродной лампы (вакуумного диода). Она представляет собой герметично запаянную стеклянную колбу, из которой откачан воздух, с двумя электродами (Рис. 1). Для того, чтобы через вакуум протекал электрический ток, необходимо электрическое поле и наличие свободных носителей заряда в промежутке между электродами. Понятно, что в вакууме практически нет носителей, поэтому нужно каким-либо способом внести некоторое количество заряженных частиц в вакуумный промежуток. возвращающие электроны в металл. Металл окружен "облаком", состоящим из электронов. Потенциальные энергии электронов иллюстрирует энергетическая диаграмма (Рис. 2). Уровень W 0 соответствует энергии покоящегося электрона вне металла, Eс – наименьшая энергия электронов проводимости (дно зоны проводимости). Распределение потенциальной энергии имеет вид потенциальной ямы, глубина которой называется электронным сродством и является важной характеристикой вещества. Понятно, что если электрон имеет полную энергию W меньше W 0, то он не может покинуть металл. Для этого ему нужно сообщить дополнительную энергию, и в зависимости от способа сообщения этой энергии явление выхода электронов из металла называется термоэлектронной (при нагревании), фотоэлектронной (под воздействием света), вторичной электронной (в результате бомбардировки другими частицами) эмиссией. , где C – постоянная, зависящая от формы и размеров электродов. Например для плоских электродов с площадью S и расстоянием между ними d . Формула зависимости тока от напряжения носит название закона Богуславского-Ленгмюра или "закона ". Характер зависимости можно объясняеть следующим образом. При эмиссии электронов из катода между электродами находится созданный этими электронами объемный отрицательный заряд, плотность которого плавно уменьшается по мере приближения к аноду (Рис. 4). Этот заряд оказывает тормозящее действие на движущиеся к аноду электроны. Увеличение анодного напряжения приводит к быстрому уходу электронов от катода и, следовательно, уменьшению плотности объемного заряда, вследствие чего анодный ток увеличивается. , где – плотность тока насыщения, К – постоянная, которая для всех металлов с совершенно чистой поверхностью имеет примерно одинаковые значения, А – величина, имеющая размерность энергии, называемая термоэлектронной работой выхода и равная разности между энергией покоящегося электрона в вакууме W 0 и наибольшей кинетической энергией электрона в металле (уровнем Ферми) ЕF: . Работа выхода электронов из металла также является одной из важнейших характеристик эмиссионных свойств металлов. Не нашли, что искали? Воспользуйтесь поиском:
|