Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Оценка двупреломления минералов в шлифах нормальной толщины




Двупреломление n g – np Интерференционная окраска
Очень слабое < 0,005 Нет выше светло-серой I порядка
Слабое 0.005 – 0.010 Не выше светло-желтой I порядка
Среднее 0,010 – 0,025 Не выше синей II порядка (нет зеленых)
Сильное 0,025 – 0,100 Есть зеленые; нет перламутровых
Очень сильное 0,100 – 0,180 Есть перламутровые; нет белого цвета высших порядков
Исключительно сильное > 0,180 Есть белый цвет высших порядков

 

Рис. 32. Схема номограммы двупреломления Мишель-Леви

 

Явление компенсации. Для определения порядка интерференционной окраски используется кварцевый клин (рис. 33), вводимый в соответствующую прорезь в верхней части тубуса микроскопа под углом 45° к кресту нитей. Кварцевый клин представляет собой пластинку, вырезанную в форме клина из кристалла кварца параллельно оптической оси, вставленную в металлическую оправу. Вдоль длинной оси оправы обычно располагается Np, а перпендикулярно к ней Ng индикатрисы кварца. Клин имеет три или четыре порядка интерференционной окраски, соответствующие по расположению порядкам окраски в номограмме Мишель-Леви. Это можно проследить при скрещенных николях, вдвигая клин в прорезь тубуса тонким концом вперед.

Направление тонкого конца обозначается на оправе острым углом треугольника. Наблюдение проводят над зерном с максимальной интерференционной окраской. Оптическая ось, соответствующая направлению Np в кварце, располагается параллельно удлинению кварцевого клина. Если теперь вдвигать клин в прорезь, то по мере увеличения его толщины возможны два варианта.

Первый вариант – когда направление Np в клине совпадает с направлением Np пластинки исследуемого минерала (рис. 34, а). В этом случае разность хода в минерале и клине совпадают и возникающие цветные полосы смещаются ближе к острому краю клина, чем если бы в оптическую систему микроскопа был введен только один клин. Смещение происходит из-за того, что суммарная разность хода увеличивается и становится равной сумме разности хода в клине и в минерале. Этот случай называется прямой параллельностью. Второй вариант – направление колебаний Np в кварцевом клине параллельно направлению Ng в пластинке минерала, так называемая обратная параллельность (рис. 34, б). В таком случае разности хода в минерале и в клине противодействуют друг другу и окончательная разность хода равна их разности. При некоторой толщине кварцевого клина обе волны будут компенсированы и в скрещенных николях вместо окраски будет темнота.

Для определения порядка интерференционной окраски исследуемое зерно ставят на затемнение, поворачивают столик на 45˚ (максимум просветления) и, запомнив окраску зерна (допустим, желтая), вдвигают кварцевый клин до момента компенсации (если компенсации нет, столик поворачивают еще на 90˚). Правильность компенсации следует проверить. Для этого нужно снять шлиф со столика. Поле зрения в той части, где было расположено зерно, при правильной компенсации должно окраситься в желтый цвет, т. к. желтая окраска зерна может быть компенсирована желтой клина, красная – красной, синяя – синей окраской и т. д. Убедившись в правильности компенсации, медленно выдвигают клин и считают, сколько еще раз в поле зрения появится желтая окраска.

 

Если до конца клина она появится один раз, то компенсирована была желтая окраска второго порядка (компенсированная + 1), если два раза – третьего порядка (компенсированная + 2) и т. д.

Определение знака удлинения (или знака главной зоны). Для определения некоторых оптических констант минералов (угла погасания, схемы абсорбции, знака главной зоны) необходимо знать расположение осей оптической индикатрисы в данном срезе минерала. Описанное выше явление компенсации применяется для определения наименования осей оптической индикатрисы в данном сечении. С этой целью используют специальные компенсационные приборы: кварцевый клин и кварцевую (или гипсовую) пластинку, а также некоторые другие компенсаторы (например, компенсатор Берека, Бабине и др.).

Принято говорить, что кристалл имеет положительное удлинение (положительный знак главной зоны), если по длине кристалла совершаются колебания, для которых он имеет больший показатель преломления – ng'.

Кристалл имеет отрицательное удлинение, если по его длине совершаются колебания с меньшим показателем – np'. Если кристалл обладает косым погасанием, т. е. колебания совершаются не параллельно ребрам, то удлинение считается положительным в том случае, когда колебания ng ' образует с направлением длины кристалла меньший угол, чем колебание np'. В обратном случае, когда с направлением длины кристалла меньший угол образует колебание np', удлинение считается отрицательным. Если оба направления колебаний образуют с длиной кристалла равные углы (около 45º), удлинение считается нейтральным.

Очевидно, о знаке удлинения можно говорить лишь в тех случаях, когда кристалл имеет отчетливо удлиненную форму и правильные кристаллографические очертания или когда на кристалле заметны штрихи спайности, направление которых принимается за направление удлинения кристалла.

Определение знака удлинения при помощи кварцевого клина методом компенсации. Кварцевый клин, о котором упоминалось выше, может быть использован для определения знака удлинения кристалла. Будем вдвигать клин тонким концом вперед в прорезь тубуса над кристаллом, направления колебаний которого расположены под 45º к нитям окулярного креста. В случае прямой параллельности по удлинению кристалла расположена ось ng, поэтому удлинение считается положительным. В случае обратной параллельности по удлинению кристалла будет расположена ось np, в этом случае удлинение будет отрицательным*.

Метод бегущих полосок. Этот метод применяется в тех случаях, когда исследуемый кристалл на краях тоньше, чем в середине, что почти всегда наблюдается в иммерсионных препаратах и иногда в шлифах с минералами, имеющими высокий показатель преломления и высокое двупреломление (у пироксенов, амфиболов, биотитов и др.). В скрещенных николях у таких кристаллов по краям будут наблюдаться концентрические каемки с более низкой интерференционной окраской, а в центре – с более высокой. При вдвигании кварцевого клина в случае прямой параллельности окраска кристалла начнет повышаться и в некоторый момент на его краях будет такой, какой была раньше в центре. В центре в тот же момент будет более высокая окраска. При дальнейшем вдвигании клина в центре появится еще более высокая окраска, а та, которая появилась раньше в центре кристалла, окажется на его краях. Будет казаться, что полоски интерференционной окраски пришли в движение и перемещаются от центра к краям (рис. 35, а). В центре же все время появляются новые цвета.

В случае обратной параллельности при тех же условиях окраска кристалла начнет понижаться и в некоторый момент в центре будет такой, какой была раньше на краях, на краях же станет еще более низкой (рис. 35, б).

При вдвигании клина низкая окраска с краев будет переходить к центру кристалла, а на краях будут появляться новые цвета, поэтому будет казаться, что каемки перемещаются от краев к центру.

Определение знака удлинения при помощи пластинки «красная I порядка». Кварцевая пластинка представляет собой простейший компенсатор (рис. 36). Это тонкая плоскопараллельная пластинка, вырезанная из кристалла кварца параллельно его оптической оси. Под микроскопом она имеет красную (фиолетово-красную, малиновую) интерференционную окраску первого порядка. Разность хода, сообщаемая пластинкой, близка к 560 нм. Пластинка вставлена в металлическую оправу и имеет оптическую ориентировку: по длинной оси располагается Np, а по короткой – Ng индикатрисы. Полная компенсация при помощи этой пластинки получается как редкое совпадение одинаковых разностей хода в ней и минеральном зерне.

Чаще наблюдается повышение или понижение интерференционной окраски, определяемое относительно красной первого порядка самой пластинки. Такая пластинка особенно удобна для определения знака удлинения кристаллов, обладающих низкой разностью хода I порядка. На таких кристаллах при прямой параллельности с пластинкой получается один из цветов II порядка. При обратной параллельности – один из цветов I порядка.

 

Примеры: 1. С пластинкой минерал приобрел синюю окраску. Относительно красной первого порядка пластинки это говорит о повышении окраски, что в свою очередь свидетельствует о согласном положении осей индикатрис в минерале и пластинке (по удлинению минерала располагается ось Np).

2. Допустим, зерно получило желтую окраску. Для низкодвупреломляющего минерала мы правильно определим это как понижение относительно красной окраски пластинки и сделаем правильный вывод о совпадении разноименных осей (по удлинению минерала идет ось Ng). А для минерала с высоким двупреломлением данный вывод может оказаться ошибочным, т. к. желтая окраска может принадлежать как первому порядку (понижение), так и более высокому (повышение). Таким образом, однозначный вывод о понижении окраски мы можем сделать только в случае появления серого цвета первого порядка, которого нет в более высоких порядках.

Для всех других случаев, дабы избежать ошибки, необходимо проверить цвет интерференционной окраски в направлении, перпендикулярном удлинению (рис. 37), т. е. – в направлении второй оси индикатрисы. Сравнив оба цвета, мы увидим, что в одном из положений будет повышение окраски (направление оси Np), а в другом – понижение (направление оси Ng).

Определение знака удлинения при помощи пластинки «четверть волны – ¼ λ ». Это – пробная пластинка, обычно изготовленная из мусковита и дающая разность хода, равную ¼ λ какого-либо определенного монохроматического света. Разность хода пластинки ¼ λ обычно лежит в пределах 130 – 150 нм (интерференционная окраска в скрещенных николях серая I порядка).

Такая пластинка увеличивает или уменьшает разность хода исследуемого кристалла примерно на ¼ порядка (весь порядок ≈ 550 нм) и меняет интерференционную окраску кристалла на какую-либо из соседних с ней по шкале интерференционных цветов в сторону повышения или понижения (в зависимости от прямой или обратной параллельности). Так, например, при прямой параллельности синий цвет прейдет в зеленый или зеленовато-желтый, зеленый – в желтый или оранжевый, желтый – в красный или красно-фиолетовый, красный – в синий. При обратной параллельности синий цвет перейдет в красно-оранжевый или красный, зеленый – в фиолетовый или синий, желтый – в зеленовато-синий или зеленый (желтый первого порядка перейдет в серый или белый), красный – в желтый.

Пластинка ¼ λ полезна при определении знака удлинения кристаллов, обладающих цветами II или III порядка, для которых пластинка «красная I порядка» может не дать однозначного решения.

Связь между знаком удлинения и оптическим знаком кристалла. В кристаллах средних сингоний, с главной осью симметрии совпадает ось вращения индикатрисы (Ng в оптически положительных и Np в оптически отрицательных кристаллах) (рис. 38). Кристаллы, сплюснутые по главной оси (имеющие форму табличек), имеют знак удлинения, обратный оптическому знаку кристалла (рис. 39). В кристаллах низших сингоний такая закономерность отсутствует. Здесь знак удлинения зависит лишь от ориентировки индикатрисы относительно направления вытянутости кристалла. Если с этим направлением совпадает ось Ng, знак удлинения будет плюс. Если с ним совпадает Np, знак удлинения – минус. Если же с удлинением кристалла совпадает ось nm, то знак удлинения будет меняться в зависимости от того, на какой из боковых граней лежит кристалл (рис. 40). Интерференционную окраску определяют следующие факторы: толщина минерального зерна, ориентировка сечения, величина двупреломления.

Определение характера погасания минералов и измерение угла погасания. Как мы уже упоминали в разделе 2.5.4, погасание наступает тогда, когда направления колебаний в николях совпадают с направлениями колебаний в данном сечении минерала. Под характером погасания понимаются особенности, характерные для погасания некоторых минералов. Минерал может погасать равномерно, а может погасать неравномерно – в таких случаях говорят о волнистом, мозаичном, искристом, пятнистом погасании. Кроме того, при погасании могут проявляться оптические аномалии, свойственные небольшой группе минералов.

 

Все эти признаки (в совокупности с другими) помогают определять как отдельные группы минералов, так и их разновидности.

Угол погасания – важная классификационная оптическая характеристика*, позволяющая определять конкретные минеральные разновидности. Особенно важен этот признак для таких минералов как плагиоклазы, пироксены и амфиболы, по углу погасания которых определяют состав и название минерала. Прямое погасание имеют минералы средних сингоний и ромбической сингонии, но только в ориентированных сечениях. Косое погасание имеют минералы триклинной и моноклинной сингоний. Угол погасания – это угол, образуемый между спайностью, совмещенной с нитью окулярного креста и моментом погасания (см. рис. 20). Прежде чем замерить угол погасания, необходимо установить наименование оси минерала, вдоль которой проходит спайность. Угол погасания записывается следующим образом: угол c:Ng или c:Np, b:Np и т. д.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных