Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Основные виды белкового пищевого сырья




Белки злаков. Анализируя аминокислотный состав суммарных белков различных злаковых культур с точки зрения состава эталонного белка для питания людей (ФАО, 1973) следует отметить, что все они, за исключением овса, бедны лизином (2,2-3,8%), а за исключением риса и сорго - изолейцином. Для белков пшеницы, сорго, ячменя и ржи характерно относительно небольшое количество метионина (1,6—1,7 мг/100 г белка). Белки пшеницы к тому же содержат недостаточное количество треонина (2,6%), а белки кукурузы — триптофана (0,6%). Наиболее сбалансированными по аминокислотному составу являются овес, рожь и рис.

Аминокислотный состав суммарных белков злаковых культур определяется аминокислотным составом отдельных фракций, в основу классификации которых положен принцип растворимости (Т. Осборн, 1907). При последовательной обработке муки или размолотого зерна водой, 5-10%-м раствором хлорида натрия, 60-80%-м водным раствором спирта и 0,1-0,2%-м раствором гидроксида натрия экстрагируются белковые фракции, соответственно названные альбуминами, глобулинами, проламинами и глютелинами. В таблице 2 приводится процентное содержание белковых фракций в зерновых культурах. В состав белков входят и так называемые склеропротеины (нерастворимые белки), содержащиеся в оболочках и периферических слоях зерна. Особенностью белков данной фракции является прочное соединение с лигнино-полисахаридным комплексом. Склеропротеины выполняют структурную функцию и мало доступны для пищеварения. Наряду с белками в зерне содержится небелковый азот (0,7-12,9% от общего азота), включающий свободные аминокислоты (50-60%), пептиды, нуклеотиды и др. Количество небелкового азота изменяется в зависимости от степени зрелости, выравненности и прорастания зерна.

Таблица 2. Содержание белковых фракций в зерне злаковых (азот фракций в % от белкового азота)

Культура Альбумины Глобулины Проламины Глютелины Склеропротеины
Пшеница мягкая 5,2 12,6 35,6 28,2 8,7
Рожь 24,5 13,9 31,1 23,3 7,2
Ячмень 6,4 7,5 41,6 26,6 17,9
Кукуруза 9,6 4,7 29,9 40,3 15,5
Овес 7,8 32,6 14,3 33,5 11,8
Гречиха 21,7 42,6 1,1 12,3 23,3
Рис 11,2 4,8 4,4 63,2 16,4

Белки неравномерно распределяются между морфологическими частями зерна. Основное их количество (65-75%) приходится на эндосперм, меньшее - на алейроновый слой (до 15,5%) и зародыш (до 22%). В алейроновом слое и зародыше концентрация белка высокая. В зародыше пшеницы содержится 33,3% белка, кукурузы - 26,5%, овса - 19,4%. Алейроновый слой пшеницы и кукурузы содержит более 19% белка. В эндосперме белки распределены также неравномерно, концентрация их снижается по мере продвижения от субалейронового слоя к центру. Субалейроновым слоем называется периферическая зона зерновки, находящаяся под алейроновым слоем. Содержание белка в данной части зерна достигает у кукурузы 27,7%, у сорго 29-30%, у ячменя 21-24%, у риса 29%. Центральная часть эндосперма содержит мало белка (7-9%). В общем же распределение белка по частям зерновки зависит от вида культуры, ее сорта и почвенно-климатических условий выращивания.

Белки бобовых культур. Основную часть семядолей бобовых культур (сои, гороха, фасоли, вики) составляют запасные белки, являющиеся в соответствии с классификацией Осборна глобулинами. Кроме того, в семенах содержится небольшое количество альбуминов, которые не являются запасными белками. В качестве самостоятельной группы в семядолях не обнаружены глютелины. Извлекаемые щелочью белки также представляют собой глобулины, но они находятся во взаимодействии с полисахаридами. Общее содержание белка в бобовых культурах высокое и составляет 20-40% от общей массы.

Среди бобовых культур в качестве источника пищевого биологически ценного белка наибольшее значение имеют семена сои. С их использованием организовано производство соевой муки (обезжиренной, полужирной и необезжиренной), концентратов и изолятов. Данные об аминокислотном составе и количестве суммарного белка в продуктах из бобов сои приведены в табл. 3.

Табл. 3.Аминокислотный состав и количество суммарного белка в продуктах из бобов сои

Характеристика Продукт
Соевые бобы Обезжиренная соевая мука Концентраты сои Изоляты сои
Содержание белка, % на с.в. 39,6 57,0 68,0 91,0
Содержание аминокислот, г на 100 г белка:        
лизин 6,5 6,3 6,3 6,0
метионин + цистин 1,3 2,9 2,8 2,2
треонин 4,6 4,0 4,3 3,5
лейцин 8,5 7,7 7,9 7,8
изолейцин 5,2 4,4 4,6 4,5
фенилаланин + тирозин 5,2 8,6 8,9 8,7
валин 5,6 4,8 4,8 4,6
триптофан 0,8 1,4 1,5 1,2

 

Наряду с белками, обладающими питательной ценностью, в состав бобовых культур входят антиалиментарные соединения, имеющие также белковую природу. Они понижают питательную ценность белковых продуктов и пищевых изделий. К таким соединениям относятся ингибиторы протеаз желудочно-кишечного тракта и лектины.

В семенах сои содержится не менее пяти ингибиторов трипсина в количестве 5-10% от общего содержания белка. Понижение активности ферментов белковыми ингибиторами связано с образованием устойчивых белок-белковых комплексов, содержащих молекулу ингибитора и одну или несколько молекул фермента.

В технологических процессах производства белковых продуктов из сои предусматривается инактивация ингибиторов протеиназ обработкой паром, микроволновым нагревом, вымачиванием с последующим кипячением и другими способами. Инактивация ингибиторов трипсина на 80- 90% по сравнению с их активностью в исходном сырье уже позволяет отнести белковые продукты к пищевым, не обладающим отрицательным воздействием на организм.

Лектины (отлат. - «выбирать») - это гликопротеины растительного происхождения, связывающие один или несколько специфических сахаров. Свое название они получили от избирательной способности вызывать агглютинацию (агрегацию, склеивание) эритроцитов крови, клеток, бактерий. Агглютинация происходит путем взаимодействия лектинов с углеводными компонентами поверхности клеток.

Отсутствие высокой активности лектинов, как и ингибиторов ферментов, в белковых продуктах из бобовых является одним из санитарно-гигиенических требований, предусматриваемых сертификацией для использования их в хлебопечении, кондитерской и других отраслях промышленности в целях повышения пищевой ценности изделий. Снижение активности лектинов достигается применением более мягких условий, чем снижение активности ингибиторов ферментов - нагреванием при 80°С.

Некоторые виды белковых продуктов из сои, энзиматически активная соевая мука содержат ферменты: липоксигеназу и b-амилазу. Липоксигеназа принимает участие в процессах отбеливания пшеничной муки и стабилизации теста хлебобулочных изделий, а b-амилаза, являясь более термостабильной, чем пшеничная, долго сохраняет активность на ранних стадиях приготовления хлеба, позволяя интенсифицировать процесс газообразования в тесте и улучшать качество хлеба.

Белки масличных культур. У масличных семян основной запасающей тканью для белков и липидов является паренхима семядолей (подсолнечник, хлопчатник, рапс), эндосперм (семена клещевины, кориандра) или одновременно паренхима семядолей и эндосперм (хлопчатник, лен). Запасные белки сосредоточены в простых алейроновых зернах (семена хлопчатника, рапса, горчицы) и сложных (подсолнечник, клещевина). Простые алейроновые зерна не содержат посторонних соединений, тогда как сложные включают белковую и небелковую части. Сложные алейроновые зерна подразделяются на два типа: зерна, содержащие глобоиды - К, Mg, Са-соли инозитфосфорной кислоты, и зерна, в состав которых входят глобоиды и кристаллоиды. Кристаллоиды расположены в центре алейроновых зерен и окружены аморфной белковой зоной. Алейроновое зерно имеет вакуольную природу, вокруг него сосредоточены липиды, находящиеся в клетке, покрытой клеточной оболочкой (рис. 8). На долю белка в составе сухой массы алейроновых зёрен приходится 60-80% общего белка семени.

Рис. 8. Схема строения сложного алейронового зерна клетки масличного растения: 1 - глобоид; 2 – белковый кристаллоид; 3 аморфная белковая зона; 4 - липидные капли; 5- клеточная оболочка

Содержание белков в семенах масличных культур составляет 14-37% на сухое вещество. В семенах подсолнечника белок содержится в количестве 15%, в ядре – 16-19%, семенах арахиса – 20-37%, конопли – 20-22%, рапсе – 25-26%, в ядрах клещевины – 18-20%, в ядрах хлопчатника – 34-37%. В белках семян масличных культур содержится 10-30% альбуминов и до 90% глобулинов. Белки алейроновых зерен (алейрины) представлены в основном глобулинами (80-97%) и незначительным количеством альбуминов и глютелинов (1-2%).

В настоящее время существует реальная возможность получения из масличного сырья концентрированных форм белка и создание на их основе новых форм белковой пищи. Целесообразность извлечения белка из данного вида сырья обусловлена его высокой массовой долей и разнообразным аминокислотным составом. Отличительной особенностью последнего является высокое количество триптофана, тирозина и фенилаланина, а у некоторых культур - лизина (рапс), серосодержащих аминокислот (кунжут, подсолнечник, рапс) и треонина (рапс, подсолнечник); наиболее ценными в биологическом отношении являются белки рапса, подсолнечника и кунжута.

В масличных семенах и шротах содержатся антипитательные вещества белковой природы, которые понижают пищевую ценность концентратов, изолятов или кормовую ценность, если шрот используется в качестве корма для животных. К таким веществам относятся ингибиторы трипсина арахиса, рицин клещевины, протеазы, уреаза и липоксигеназа.

Белки картофеля, овощей и плодов. Относительно низкое содержание азотистых веществ в картофеле (около 2%), овощах (1,0-2,0%) и плодах (0,4-1,0%) свидетельствует о том, что данные виды пищевого растительного сырья не играют значительной роли в обеспечении белком продуктов питания (табл. 4). Исключение составляет картофель, который, несмотря на невысокое содержание белка, как источник азотистых соединений имеет более существенное значение. Если учесть, что потребление картофеля в среднем составляет 330 г в день, то с данным видом продукта удовлетворяется 6-8% общей суточной потребности человека в белке. Количество белкового азота в клубнях картофеля обнаруживается в 1,5-2,5 раза больше, чем небелкового, тогда как в овощах и плодах, наоборот - менее 50% (например, в капусте 40%, винограде 7%). Небелковый азот картофеля представлен аминным (67-130 мг%) и нитратным азотом с аммиаком, которые от общего азота в клубнях составляют 18-31 и 10-15%, соответственно. Сор-та картофеля в большей степени отличаются по содержанию небелкового азота, чем белкового, и прежде всего по количеству свободных аминокислот. Среди них преобладают аланин, лизин, гистидин, глутаминовая кислота и фенилаланин.

Таблица 4.Содержание белка в овощах и плодах (в % на сухую массу)

Капуста белокочанная Морковь Лук Баклажаны Свекла Огурцы Арбуз Абрикос Яблоки
1,8 1,3 1,4 1,1 1,5 0,8 0,7 0,9 0,4

Белки картофеля являются биологически ценными белками, так как содержат все незаменимые аминокислоты. По отношению к белкам куриного яйца биологическая ценность белков картофеля равна 85%, по отношению к идеальному белку -70%. Первыми лимитирующими аминокислотами белков картофеля являются метионин и цистеин, второй - лейцин.

Белки картофеля отличаются по растворимости и компонентному составу, определяемому электрофорезом. Большая часть белков картофеля (70%) представлена глобулинами, меньшая (30%) - альбуминами.

Азотистые вещества картофеля, овощей и плодов имеют существенное значение для формирования питательных и органолептических свойств продуктов (вкуса, аромата, цвета, консистенции), стойкости при хранении и сохранности витаминов. Так, свободные аминокислоты принимают участие в реакциях, связанных с образованием аромата (реакции Майяра), нитраты в избыточных количествах ухудшают стойкость при хранении, а действие, например, пектолитических ферментов к концу созревания плодов обуславливает их размягчение. Некоторые из азотистых соединений выполняют роль ингибиторов протеаз и амилаз.

Ферменты, являясь белками, оказывают значительное влияние на потребительские свойства пищевых продуктов и полуфабрикатов, принимая участие в процессах созревания, дыхания при хранении сочного сырья и его переработке. Прежде всего это относится к оксидоредуктазам и гидролазам. Сохранность овощей и плодов в процессе хранения зависит от активности анаэробных дегидрогеназ (алкогольде-гидрогеназы, дегидрогеназ яблочной, янтарной, лимонной кислот) и кислородактивирующих оксидоредуктаз. Способы хранения плодов и овощей предусматривают подавление активности указанных ферментов (исключение доступа кислорода, понижение температуры и т.д.).

Белки мяса и молока. Мясо, молоко и получаемые из них продукты содержат необходимые организму белки, которые благоприятно сбалансированы и хорошо усваиваются. Белки мышечной ткани мяса животных полноценны, по сбалансированности аминокислот говядина, баранина и свинина мало отличаются друг от друга. Белки соединительной ткани и хрящей являются неполноценными. В организме человека и животных белки мышц выполняют сократительную функцию, белки соединительной ткани и хрящей - структурную. Функции всех этих видов белков основаны на их фибриллярной природе.

Содержание белка в мясных продуктах колеблется от 11 до 22%. Главными мышечными белками являются миозин и актин, молекулярная функция которых заключается в обеспечении механизма мышечного сокращения и расслабления при участии АТФ. Миозин по массе составляет 55% мышечного белка Актин -это мономерный глобулярный белок, на долю которого приходится 25% общей массы мышечного белка.

В мышечных клетках содержится глобулярный водорастворимый хромопротеид миоглобин, имеющий в качестве простетической группы гемциклический тетрапиррол, присутствием которого объясняется красный цвет этого белка.

Биологическая функция миоглобина заключается не в транспортировании кислорода, как у гемоглобина, а в его запасании. В условиях кислородного голодания (например, при физической нагрузке) кислород высвобождается из комплекса с миоглобином и поступает в митохондрии мышечных клеток, где осуществляется синтез АТФ (окислительное фосфорилирование).

Миоглобин, не связанный с кислородом, называют дезоксимиоглобином (Mb), оксигемированный Mb называют оксимиоглобином (МЬО2). Окраска мясопродуктов зависит от содержания миоглобина, состояния гема и белковой части макроглобулы. Окисление Fe2+ в миоглобине до Fe3+ приводит к изменению окраски пигмента от ярко-красного до темно-коричневого, так как образующийся метмиоглобин (MetMb) теряет способность связывать молекулярный кислород. Тепловая денатурация глобина также приводит к потере способности гемового пигмента связывать кислород и ухудшает цвет изделий.

Кислород миоглобина может замещаться такими лигандами, как оксид азота, оксид углерода и др., поэтому данное свойство белка мышечной ткани мяса используется для получения интенсивной окраски мясопродуктов. Нитрит (NO), применяемый для этой цели, вступая в реакцию с миоглобином, образует нитрозомиоглобин, переходящий при нагревании в устойчивый пигмент красного цвета нитрозомиохромоген:

Наиболее распространенным белком в животном мире является коллаген - главная макромолекула кожи, сухожилий, кровеносных сосудов, костей, роговицы глаза и хрящей.

Близкий по свойствам к коллагену, в эластичных фибриллах соединительной ткани обнаружен белок эластин, содержащийся в связках и стенках кровеносных сосудов. Этот белок богат глицином, аланином и лизином, но беден пролином. Отличительной особенностью эластина является наличие в его структуре поперечных связей необычного характера.

Мясо, содержащее много соединительной ткани, остается жестким и после тепловой обработки; усвояемость коллагена и эластина в нем очень низкая. Однако при необходимости усиления двигательной функции кишечника целесообразно использование продуктов, богатых соединительной тканью. В диетах щадящего режима применяют желатин - продукт неполного гидролиза коллагена. По аминокислотному составу желатин неполноценен, но желеобразные продукты из него перевариваются без напряжения секреции пищеварительных органов.

Молоко - это гетерогенная система, в которой в качестве дисперсной фазы выступают эмульгированные жировые глобулы и коллоидные мицеллы казеина, а в роли дисперсионной среды - раствор белков, лактозы, солей и витаминов. Общее содержание белков в молоке колеблется от 2,9 до 3,5%. Среди них выделяются две основные группы: казеины и сывороточные белки (табл. 5). В молоке содержится более 20 ферментов.

Таблица 5.Состав и молекулярные характеристики белковых компонентов молока

Компоненты Содержание
в % от общих белков в г/л
Казеин: 78-85 ...
as1 казеин as2 казеин 43-54 12-15 3-4
b-казеин 25-35 9-11
c-казеин 8-15 2-4
Белки сыворотки: 15-25 6-8
b-лактоглобулин 7-12 3,6
a-лактальбумин 2-5 1,7
иммуноглобулины 1,5-2,5 0,6
альбумин сыворотки крови 0,7-1,3 0,4

Основными белками молока являются казеины, которые легко перевариваются и являются источниками незаменимых аминокислот, кальция, фосфора и ряда физиологически активных пептидов. Важнейшими физиологическими функциями обладают и сывороточные белки. Иммуноглобулины выполняют защитную функцию, являются носителями антибактериальных свойств.

Казеин из молока осаждается при рН 4,6-4,7, когда на его молекулах наступает равенство положительных и отрицательных зарядов. Осажденный казеин практически не растворяется в воде, но растворяется в слабощелочной среде и растворах солей щелочных металлов и минеральных кислот. Нерастворимый казеин обладает способностью связывать воду в достаточно больших количествах (более 2 г на 1 г белка), что очень важно для устойчивости частиц белка в сыром, пастеризованном или стерилизованном молоке. Гидрофильные свойства казеина усиливаются при взаимодействии его с b-лактоглобулином, которое наблюдается в процессе тепловой обработки молока, и от них зависят структурно-механические свойства сгустков, образующихся при кислотном свертывании или получении сырной массы при созревании сыров.

Промышленные казенны получают из обезжиренного молока действием кислот, кисломолочной сыворотки, введением солей кальция, химозина или других ферментов. В зависимости от способа получения различают казеинат натрия, казеинат кальция, кислотный, сычужный казеин с разными функциональными свойствами. Для регулирования последних часто используют неполный ферментативный гидролиз или смешение с растительными белками и их совместную сушку.

При производстве новых форм белковой пищи (аналогов мясных и рыбных продуктов) большое значение имеет гелеобразование казеина, его взаимодействие с веществами небелковой природы, образование стойких эмульсий и явление синерезиса.

Белки молока характеризуются высокой биологической ценностью, они содержат в избыточных количествах лизин и триптофан с одновременным недостатком серосодержащих аминокислот. Белки сыворотки содержат незаменимые аминокислоты в значительно больших количествах, чем казеин, включая лизин, треонин, триптофан, метионин и цистеин.

На долю сывороточных белков от общего количества белков в молоке приходится 0,5-0,8%. b-Лактоглобулин устойчив в кислой среде желудка к действию пепсина, поэтому расщепляется только в кишечнике трипсином и химотрипсином. В процессе пастеризации молока белок денатурируется, образуя комплексы с казеином, и осаждается вместе с ним при кислотной и сычужной коагуляции. Податливость данного комплекса действию сычужного фермента понижается. a-Лактальбумин не осаждается в изоэлектрической точке (рН 4,6), не свертывается под действием сычужного фермента и термостабилен в силу большого количества дисульфидных связей. Иммуноглобулины по химической природе являются гликопротеидами. Они выполняют свою функцию, вызывая агглютинацию микроорганизмов и других чужеродных клеток. Выделены три основные группы иммуноглобулинов: G, А и М.

Различают два основных типа молочной сыворотки: сладкую, образующуюся при производстве сыров, и кислую, получаемую при осаждении творога и казеинов. Для применения молочной сыворотки в качестве добавок в хлебопекарной, кондитерской промышленности, для производства смесей для детского питания ее концентрируют методами сушки, ультрафильтрации, электродиализом и осаждением белка в виде комплексов с полиэлектролитами. Для получения изолятов, концентратов и копреципитатов применяют термоденатурацию с последующим осаждением белка в ИЭТ (рН 4,5-4,6) и комплексообразование с анионными полисахаридами (КМЦ, альгинаты и пектины). Эти способы позволяют выделять до 70-90% полноценного белка молочной сыворотки и варьировать его функциональные свойства.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных