Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Расширенное определение




Обычная формула Бернули применима на случай когда при каждом испытании возможно одно из двух cобытий. Формулу Бернулли можно обобщить на случай, когда при каждом испытании происходит одно и только одно из событий с вероятностью , где . Вероятность появления раз первого события и - второго и раз k-го находится по формуле

,

где

Свойства

Пусть p - вероятность успеха в схеме Бернулли, q=1-p. Тогда самым вероятным среди событий является событие , где можно найти с неравенства .

Формула Бернулли удобна для вычислений лишь при сравнительно небольшом числе испытаний . При больших значениях пользоваться этой формулой неудобно. Чаще всего в этих случаях используют формулу Пуассона. Эта формула определяется теоремой Пуассона.

Теорема. Если вероятность наступления события в каждом испытании постоянна и мала, а число независимых испытаний достаточно велико, то вероятность наступления события ровно раз приближенно равна

,(3.4)

где .

Доказательство. Пусть даны вероятность наступления события в одном испытании и число независимых испытаний . Обозначим . Откуда . Подставим это выражение в формулу Бернулли:

При достаточно большом!!n,, и сравнительно небольшом!!m,, все скобки, за исключением предпоследней, можно принять равными единице, т.е.

Учитывая то, что достаточно велико, правую часть этого выражения можно рассмотреть при , т.е. найти предел

Тогда получим

(3.5)

Пример. На предприятии изготовлено и отправлено заказчику 100000 бутылок пива. Вероятность того, что бутылка может оказаться битой, равна 0,0001. Найти вероятность того, что в отправленной партии будет ровно три и ровно пять битых бутылок.

Решение. Дано: n = 100000, p = 0,0001, m = 3 (m = 5).

Находим .

Воспользуемся формулой Пуассона

Локальная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0 < р < 1), событие наступит ровно k раз (безразлично, в какой последовательности), приближенно равна (тем точнее, чем больше n)

Для определения значений φ(x) можно воспользоваться специальной таблицей.

Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0 < р < 1), событие наступит не менее k1 раз и не более k2 раз, приближенно равна

P(k1;k2)=Φ(x'') - Φ(x')

Здесь

- функция Лапласа

Значения функции Лапласа находят по специальной таблице.

Пример. Найти вероятность того, что событие А насту пит ровно 70 раз в 243 испытаниях, если вероятность появления этого события в каждом испытании равна 0,25.

Решение. По условию, n=243; k = 70; р =0,25; q= 0,75. Так как n=243 - достаточно большое число, воспользуемся локальной теоремой Лапласа:

где х = (k—np)/ √npq.

Найдем значение х

По таблице п найдем ф(1,37) =0,1561. Искомая вероятность

P(243)(70) = 1/6,75*0,1561 =0,0231.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных