Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Виды клеточной гибели




 

Гибель (смерть) отдельных клеток или целых их групп постоянно встречается у многоклеточных организмов, также как гибель одноклеточных организмов. Причины гибели, процессы морфологического и биохимического характера развития клеточной смерти могут быть различными. Но все же их можно четко разделить на две категории:

· некроз (от греч. nekrosis - омертвление) связывается с нарушением внутриклеточного гомеостаза в результате нарушения проницаемости клеточных мембран, приводящим к изменению концентрации ионов в клетке, с необратимыми изменениями митохондрий, что сразу приводит к прекращению всех жизненных функций, включая синтез макромолекул. Некроз вызывают повреждения плазматической мембраны, подавление активности мембранных насосов под действием многих ядов, а также необратимые изменения энергетики при недостатке кислорода (при ишемии происходит закупорка кровеносного сосуда) или отравлении митохондриальных ферментов (действие цианидов).

Обычным является то, что участок некроза подвергается атаке лейкоцитов и в зоне некроза развивается воспалительная реакция.



· апоптоз (от греч. корней, означающих «отпадение» или «распадение»), который часто называют программируемой клеточной смертью (ПКС) или даже клеточным самоубийством без их физического или химического повреждения, происходит как бы их «беспричинная» смерть. Гибель клеток наблюдается практически на всех стадиях онтогенеза. Многочисленны примеры отмирания клеток без повреждения при эмбриогенезе.


Биологическая роль апоптоза, или программированной смерти клеток, очень велика: это удаление отработавших свое или ненужных на данном этапе развития клеток, а также удаление измененных или патологических клеток, особенно мутантных или зараженных вирусами.

Итак, для того чтобы клетки в многоклеточном организме существовали, нужны сигналы на их выживание — трофические факторы, сигнальные молекулы. Эти сигналы могут быть переданы на расстояние и уловлены соответствующими рецепторными молекулами на клетках-мишенях (гормональная, эндокринная сигнализация), это может быть паракринная связь, когда сигнал передается на соседнюю клетку (например, передача нейромедиатора). При отсутствии таких трофических факторов реализуется программа апоптоза. В то же время апоптоз может вызываться сигнальными молекулами, например при резорбции хвоста головастиков под действием тироксина. Кроме того, действие ряда токсинов, влияющих на отдельные звенья метаболизма клетки, также может стать причиной клеточной гибели посредством апоптоза.

 

Рис. 1. Два пути клеточной гибели

а — апоптоз (программированная клеточная смерть): 1 — специфическое сжатие клетки и конденсация хроматина, 2 — фрагментация ядра, 3 — фрагментация тела клетки на ряд апоптических телец;

6 — некроз: 1 — набухание клетки, вакуолярных компонентов, конденсация хроматина (кариорексис), 2 — дальнейшее набухание мембранных органоидов, лизис хроматина ядра (кариолизис), 3 — разрыв мембранных компонентов клетки - лизис клетки

апоптоз «изнутри» и апоптоз «по команде».

В первом случае задача процесса - убрать поврежденные клетки. Апоптоз запускается сигналами, возникающими внутри самой клетки при неудовлетворительном ее состоянии - повреждении хромосом, внутриклеточных мембран и т.д.

Второй вариант апоптоза наблюдается во вполне нормальных и жизнеспособных клетках, которые с позиции целого организма оказываются ненужными или вредными. В этом случае клетка получает из внеклеточной среды, например от окружающих клеток, сигнал «погибнуть», который передается через мембранные или, реже, цитоплазма-тические рецепторы. Иногда сигналом для начала апоптоза может быть и отсутствие необходимого сигнала. В результате контакта сигнальных молекул с наружной частью белка-рецептора последний претерпевает структурные изменения, что тем или иным способом приводит к запуску реакций клеточной гибели.

 

Клеточные сгущения – концентрация клеток вокруг каких-либо структур.

Пример: сгущение мезенхимных клеток предшествуют образованию зародышевых кровеносных сосудов, хряща, кости или мышечной ткани.

Избирательная сортировка клеток – выделение и объединение клеток одного зачатка из смеси, содержащей клетки разных зачатков. это явление распространяется на клеточный материал как зародышевых листков, так и отдельных органов. Значение избирательной сортировки заключается в окончательном упорядочении положения клеток в клеточных комплексах.


Клеточная адгезия Механизм сортировки и слипания (адгезии) клеток лежит в основе выделения и объединения клеток одного типа среди всех прочих. В процессе развития клетки «узнают» друг друга и сортируются в зависимости от свойств, т.е. образуют скопления и пласты избирательно, только с определенными клетками. Этот механизм крайне важен при формировании зародышевых листков в ходе гаструляции, образовании структур в органогенезе, осуществлении регенеративных процессов и иммунных реакций в постнатальном развитии.

Начало изучению сортировки и адгезии клеток положили эксперименты Таунса и Гольтфретера. Диссоциированные (см. разделенные) с помощью ферментов клетки зародыша амфибии на стадии гаструлы тщательно перемешивали и помещали в культуральную среду. Сначала клетки представляли собой беспорядочную смесь, затем клетки эктодермы, мезодермы и энтодермы разделялись (сегрегировали), собирались в отдельные группы, каждая из которых занимала свою определенную область. Локализация заново образованных зародышевых листков иногда даже соответствовала их положению в зародыше - эктодерма по периферии агрегата, энтодерма внутри, а мезодерма между ними.

Было установлено, что клетки зародышевых листков имеют избирательное сродство друг к другу: внутренняя поверхность эктодермы имеет положительное сродство к мезодермальным клеткам и отрицательное к энтодермальным. Мезодерма в свою очередь обладает положительным сродством и к экто-, и к энтодерме.

Многочисленные исследования, выполненные в последние годы, показали, что избирательная сортировка и адгезия клеток обеспечивается наличием на их мембранах так называемых молекул межклеточной адгезии (САМ, от англ. cell-adhesion molecules).

САМ - белки, связанные с плазматической мембраной клетки и обеспечивающие механическое взаимодействие клеток друг с другом. Часто они пронизывают мембрану и присоединяются к цитоскелету. Во многих случаях отдельная молекула способна взаимодействовать не с одним, а с несколькими веществами, для чего служат разные участки связывания. Обычно белки межклеточной адгезии расположены кластерами (группами) и образуют участки многоточечного связывания.

К молекулам адгезии относят 4 семейства белков: кадгерины, селек-тины, интегрины и семейство иммуноглобулинов. Опосредуемая ими адгезия может осуществляться на основе двух механизмов: гомофиль-ного - молекулы адгезии одной клетки связываются с молекулами того же типа соседней клетки, и гетерофильного, когда две клетки имеют на своей поверхности разные типы молекул адгезии, которые связываются между собой (рис. 8.15). Особенности функционирования различных семейств представлены в табл. 8.1.

 

 

Клеточная дифференцировка – процесс, в результате которого относительно однородный материал заордыша в ходе эмбриогенеза преобразуется в устойчивые элементы, разнородные по морфологии, биохимическим показателям, функциям и т д.

Генетические основы клеточной дифференцировки объясняет гипотеза дифференциальной активности генов.
Согласно ей различия в спектре белков, образуемых дифференцируемыми клетками, отражают различия в наборе активных генов. В клетках любого направления специализации выделяют как бы 3 группы активных генов:
- контролирующие фундаментальные процессы жизнедеятельности клеток и активные во всех живых клетках
- обусловливающие сходные черты клеток одной ткани
- контролирующие черты специфичные для клеток конкретного типа

Главный механизм клеточной дифференцировки сводится к избирательному блокированию – деблокированию или инактивации – активации отдельных генов или групп.(См выше в вопросе 38 вроде) Межклеточные взаимодействия.
Решающее значение имеют контактные индукция и компетенция, в меньшей степени — дистантные взаимодействия клеток, обусловливающие морфогенетические корреляции, контролируемые влияния со стороны более широкого клеточного окружения целого зачатка или зародыша.
Компетенция- способность клеток зародыша животных и растений реагировать на влияние др. частей зародыша образованием соответственных структур или дифференцировкой.
Возникает на определенных стадиях развития организма и сохраняется ограниченное время.

На всякий случай: Межклеточные контакты: адгезивные точечные, замыкающие простой контакт и проводящие нексусы и синапсы

Межклеточные взаимодействия

По существу основу деятельности иммунной, гуморальной и различных «этажей» нервной системы, составляют различные виды межклеточных взаимодействий. Целостность организма есть результат определенных информационно-материальных взаимодействий между его составными частями (элементами). Поэтому изучать целое – значит познавать не только его составные части, но и информационные и морфофизиологические взаимодействия между ними.

Межклеточные контакты играют ключевую роль в формообразовании ткани или органа.

По своим функциональным свойствам межклеточные контакты подразделяются:

1. Контакты простого типа:

· простые межклеточные соединения

· интердигитации (пальцевые соединения)

2. Контакты сцепляющего типа:

· десмосомы

· адгезивный поясок

3.

4. Контакты запирающего типа:

· плотное соединение (запирающая зона)

5. Контакты коммуникационного типа:

· щелевидные соединения (нексусы)

· синапсы

 

Простое межклеточное соединение осуществляется путем сближения плазмолемм клеток до расстояния 15-20нм и взаимодействия белков плазматических мембран – кадгеринов.

Имеются разнообразные семейства кадгеринов, характерные для той или иной ткани. Благодаря кадгерину клетки в процессе гистогенеза и органогенеза узнают друг друга и объединяются в единую структуру, например, эпителиальный пласт. (Раковые клетки не узнают друг друга).

Пальцевидные соединения (интердигитации) образуются за счет взаимной инвагинации (впячивания) обеих плазмолемм в начале в одном, а затем в другом. Это один из трех видов контактов между кардиомиоцитами.

Десмосома представляет небольшое округлое образование, построенное с участием плазмолемм соседних клеток. Десмосомы построены из белка десмоплакина, который образует слой на внутренней стороне каждой мембраны. К слою десмоплакина присоединяются пучки промежуточных филаментов.

Промежуточные филаменты в разных тканях представлены разными белками, например, в эпителии – кератином, в мышечной – десмином. С наружной стороны мембраны пространство между десмосомами заполнено утолщенным слоем гликокаликса. Гликокаликс десмосом пронизан склеивающим (адгезивным) белком – десмоглеином.

Адгезивный поясок встречается в однослойных эпителиях, имеет вид двойных лент. По структуре адгезивный поясок похож на десмосому, но образован другими белками.

Плотное соединение образуется с помощью интегральных адгезивных белков. В таких контактах плазмолеммы плотно прилегают друг к другу. Плотные соединения также имеют лентовидную форму. Однако ленты имеют вид ячеистой сети. Плотные контакты надежно разграничивают компартменты, находящиеся с базальной и апикальной (верхушечной) сторон однослойного эпителия. Контакты в виде плотных соединений имеются в эндотелии сосудов.


42. Взаимодей­ствие зачатков и тканей. Эмбриональная индукция, ее виды. Опыты Г. Шпемана в изучении явления эмбриональной индукции.

Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.
опыт Г. Шпемана на зародышах амфибий.

Шпеман использовал два вида тритонов: тритона гребенчатого, яйца которого лишены пигмента и потому имеют белый цвет, и тритона полосатого, яйца которого благодаря пигменту имеют желто-серый цвет.
Один из опытов заключается в следующем: кусочек зародыша из области дорсальной губы бластопора на стадии гаструлы тритона гребенчатого пересаживают на боковую или вентральную сторону гаструлы тритона полосатого. В месте пересадки происходит развитие нервной трубки, хорды и других органов. Развитие может достичь довольно продвинутых стадий с образованием дополнительного зародыша на боковой или вентральной стороне зародыша реципиента. Дополнительный зародыш содержит в основном клетки зародыша реципиента, но светлые клетки зародыша-донора тоже обнаруживаются в составе различных органов.
Из этого и подобных опытов следует несколько выводов.

Во-первых, участок, взятый из спинной губы бластопора, способен направлять или даже переключать развитие того материала, который находится вокруг него, на определенный путь развития. Он как бы организует, или индуцирует, развитие зародыша как в обычном, так и в нетипичном месте.

Во-вторых, боковая и брюшная стороны гаструлы обладают более широкими потенциями к развитию, нежели их презумптивное предполагаемое проспективное направление, так как вместо обычной поверхности тела в условиях эксперимента там образуется целый зародыш.

В-третьих, достаточно точное строение новообразованных органов в месте пересадки указывает на эмбриональную регуляцию. Это означает, что фактор целостности организма приводит к достижению хорошего конечного результата из нетипичных клеток в нетипичном месте, как бы управляя процессом, регулируя его в целях достижения этого результата.

Индукция (от лат. inductio — побуж­дение, наведение) в эмбриологии - воздействие одних частей развивающегося зародыша (индукторов) на другие его части (реагирующую систему), осуществляющееся при их контакте и определяющее направление развития реагирующей системы, подобное направлению дифференцировки индуктора (гомотипическая индукция) или отличное от него (гетеротипическая индукция). индукция была открыта в 1901 немецким эмбриологом Х. Шпеманом при изучении образования линзы (хрусталика) глаза из эктодермы у зародышей земноводных. При удалении зачатка глаза линза не возникала. Зачаток глаза, пересаженный на бок зародыша, вызывал образование линзы из эктодермы, которая в норме должна была дифференцироваться в эпидермис кожи. Позже Шпеман обнаружил индуцирующее влияние хордомезодермы на образование из эктодермы гаструлы зачатка центральной нервной системы - нервной пластинки; он назвал это явление первичной эмбриональной индукцей, а индуктор - хордомезодерму - организатором. Дальнейшие исследования с удалением частей развивающегося организма и их культивированием по отдельности или в комбинации и пересадкой в чуждое им место зародыша показали, что явление индукции широко распространено у всех хордовых и многих беспозвоночных животных. Осуществление индукции возможно лишь при условии, что клетки реагирующей системы компетентны к данному воздействию, т. е. способны воспринимать индуцирующий стимул и отвечать на него образованием соответствующих структур.

В процессе развития осуществляется цепь индукционных влияний: клетки реагирующей системы, получившие стимул к дифференцировке, в свою очередь часто становятся индукторами для других реагирующих систем; индукционные влияния необходимы и для дальнейшей дифференцировки реагирующей системы в заданном направлении. Способность клеток, дифференцирующихся под индуктивным воздействием, самим индуцировать дифференцировку новой группы клеток получило название вторичной индукции.

Во многих случаях установлено, что в процессе индукции не только индуктор влияет на дифференцировку реагирующей системы, но и реагирующая система оказывает на индуктор воздействие, необходимое как для его собственной дифференцировки, так и для осуществления им индуцирующего влияния, т. е. что индукция - взаимодействие групп клеток развивающегося зародыша между собой. Для ряда органогенезов показано, что в процессе индукции из клеток индуктора в клетки реагирующей системы переходят вещества (индуцирующие агенты), которые участвуют в активации синтеза специфических информационных РНК, необходимых для синтеза соответствующих структурных белков в ядрах клеток реагирующей системы.

Действие индукторов, как правило, лишено видовой специфичности. Органоспецифическое действие собств. индукторов может быть в эксперименте заменено действием ряда органов и тканей зародышей старшего возраста и взрослых животных (чужеродные, или гетерогенные, индукторы) или выделенными из них химическими веществами — индуцирующими факторами (напр., из туловищных отделов 9—11-дневных куриных зародышей выделен т. н. вегетализующий фактор — белок с мол. м. ок. 30 000, вызывающий в компетентной эктодерме гаструлы земноводных образование энтодермы и вторично — хорды, мышц и др. производных мезодермы). Действие индукторов может быть имитировано обработкой клеток компетентной ткани более простыми химическими соединениями, например солями натрия и лития, сахарозой, а также некоторыми повреждающими клетки воздействиями; по-видимому, при этом в клетках высвобождаются собств. индуцирующие факторы, находившиеся в них в связанном состоянии. Такую индукцию иногда наз. эвокацией, а индуцирующие стимулы — эвокаторам индукции.


43. Нервная регуля­ция развития, взаимосвязь нервной системы и иннервируемого органа в онтогенезе

 

Нервная регуляция. Центральная и периферическая нервная система


В организме клетки, ткани, органы и системы органов работают как единое целое. Их согласованная работа регулируется двумя способами: с помощью химических веществ через жидкие среды организма (кровь, лимфу, межклеточную жидкость) - этот способ называется гуморальным, - и с помощью нервной системы.

Головной и спинной мозг связан нервами со всеми органами. Мозг регулирует работу органов посредством нервных импульсов. Нервная система возбуждает или тормозит функции организма. Изменение функций организма определяется условиями внешней и внутренней среды. Мозг постоянно получает информацию о данном изменении. Между мозгом и всеми органами существуют двухсторонние связи: от органов к мозгу и от мозга к органам. Благодаря двусторонним связям мозг обеспечивает соответствие работы органов потребностям организма.


Основными структурными элементами нервной системы являются нейроны, из которых построены функциональные элементы нервной системы - рефлекторные дуги. В основе деятельности нервной системы лежит рефлекс - ответ на раздражение организма при участии нервной системы.

В головном мозге выделяют ствол, мозжечок и большой мозг. К стволу относятся: продолговатый мозг, мост, средний, промежуточный мозг. Каждый отдел мозга выполняет определенные функции. В головном и спинном мозге различают белую и серое вещество. Белое вещество составляют отростки нейронов, обеспечивающих передачу нервных импульсов, а серое - тела нейронов.

Большой мозг состоит из двух полушарий. Каждое полушарие складчатая и разделена бороздами на лобную, теменную, височную и затылочную доли. В коре большого мозга различают чувствительные, двигательные и ассоциативные зоны. В височной доле находится слуховая зона. В участке коры за центральной бороздой лежит зона кожно-мышечной чувствительности. Кроме того, в коре большого мозга выделяют зоны вкусовой и обонятельной чувствительности. Перед центральной бороздой расположена двигательная зона коры. Ассоциативные зоны объединяют деятельность двигательных и сенсорных зон, обеспечивают интегрирующую функцию мозга. С деятельностью ассоциативных зон связаны высшие психические функции: память, речь, мышление, сознание, регуляции поведения. Кора функционирует как единое целое и является материальной основой психической деятельности человека.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных