Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность ра-




вен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на электрическую постоянную e0.

Эта формулировка представляет собой теорему К. Гаусса.

Применяя теорему Гаусса, можно определить напряженности полей, создаваемых заряженными телами различной формы:

1) напряженность поля равномерной бесконечной плоскости

;

2) напряженность поля двух бесконечных равномерно заряженных плоскостей ;

3) напряженность поля заряженной сферической поверхности

,

где величина называется поверхностной плотностью заряда.

1.4. Работа сил электростатического поля при перемещении заряда. Циркуляция вектора напряженности электростатического поля. Потенциальная энергия и потенциал электростатического поля

При перемещении заряда в электростатическом поле действующие на заряд кулоновские силы совершают работу. Пусть точечный заряд q 0 > 0 перемещается в поле другого точечного заряда q > 0 из точки С в точку В вдоль произвольной траектории (рис. 1.5). При элементарном перемещении заряда d l эта сила совершает работу d A:

d A = F ·d l = F d l cosa,

где a – угол между векторами F и d l; d l cosa = d r – проекция вектора d l на направление силы F. Таким образом,

d A = F d r, .

 

Полная работа по перемещению заряда q 0 из точки С в точку В определяется интегралом

где r 1 и r 2 – расстояния от заряда q до точек С и В. Из полученной формулы следует, что работа, совершаемая при перемещении заряда q 0 в поле заряда q, не зависит от формы траектории движения, а зависит только от начального и конечного положений заряда. Следовательно, электростатическое поле точечного заряда – потенциальное, а действующие в нем силы – консервативные.

Работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т.е. Так как d A = F d l и F = E q 0, то d A = q 0 E d l. Отсюда получаем . Если заряд q 0 является единичным положительным точечным, то получим

,

где El = E cosa – проекция вектора Е на направление элементарного перемещения d l. Интеграл называется циркуляцией вектора напряженности. Таким обра­зом, циркуляция вектора напряженности электростатического поля вдоль лю­бого замкнутого контура равна нулю. Это заключение справедливо для потенциаль­ного поля.

Работа в таком поле совершается за счет убыли потенциальной энергии:

A = – Δ W п = W п1 W п2.

Используя формулу работы силы электростатического поля по перемещению заря­да, получим

= = W п1 W п2.

Анализируя полученное выражение, можно сделать вывод, что потенциальная энергия точечного заряда q 0 в поле заряда q равна

.

Если поле создано системой зарядов q 1, q 2,..., qn, то потенциальная энергия за­ряда q 0:

.

Потенциальная энергия заряда q 0 зависит от его величины. Однако отношение потенциальной энергии заряда q 0 к его величине является постоянным для данной точки поля и может служить энергетической характеристикой дан­ной точки поля. Отношение называется потенциалом электростатичес­кого поля j:

.

Потенциал j– скалярная физическая величина, численно равная потенциальной энергии единичного положительного заряда, поме­щенного в данную точку поля.

Ранее было записано A = W п1 W п2. Так как W п1 = φ 1 q 0 и
W
п2 = φ 2 q 0, то A = q 0(φ 1φ 2) и Δ φ = (φ 1φ 2) = .

Разность потенциалов Δ φ двух точек поля численно равна работе сил поля по перемещению единичного положительного заряда из точки 1 в точку 2.

Если заряд q 0 перемещать из какой-либо точки поля в бесконечность, то r 2 ® ¥, W п2 = 0 и φ 2 = 0. Тогда работа A по перемещению заряда q0 в бесконечность:

A = q 0 φ 1, φ 1 = .

Потенциал точки поля численно равен работе, совершаемой электрическими силами при перемещении единичного положи-тельного заряда из данной точки поля в бесконечность.

Потенциал точки поля системы зарядов q 1, q 2,..., qn равен алгебраической сумме потенциалов полей всех этих зарядов:

.

Единицей потенциала является вольт (В).

Для графического изображения распределения потенциала электростатического поля пользуются эквипотенциальными поверхностямиповерхностями, потенциал всех точек которых одинаков. Если поле создано точечным зарядом, эквипотенциальные поверхности в данном случае – концентрические сферы, а линии напряженности перпендикулярны эквипотенциальным поверхностям (рис 1.6).






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных