Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Программа дисциплины




1. Введение. Теория строения атома. Современные представления о строении атома. Уравнение Луи де Бройля. Принцип неопределенности Гейзенберга. Уравнение Шредингера, квантовые числа электрона. Многоэлектронные атомы. Принципы формирования электронной оболочки атома.
2. Периодическая система химических элементов с точки зрения теории строения атомов.Периодический закон Д.И.Менделеева в свете теории строения атома. Периодическая система как графическое выражение пери-одического закона, ее структура с позиций теории строения атома. Перио-дическое и непериодическое изменение параметров атомов и свойств хими-ческих элементов. Энергия ионизации и сродства к электрону, электроотри-цательность. Изменение кислотно-основных свойств и окислительно-вос-становительных свойств соединений химических элементов по периодам и подгруппам. Их зависимость от радиусов атомов и от степени окисления.
3. Химическая связь и строение молекул.Квантово-механическая теория ковалентной связи. Основные положения метода валентных связей (МВС), Параметры и свойства ковалентной связи. Гибридизация атомных орбита-лей. Ионная связь. Строение веществ в конденсированном состоянии, межмолекулярные взаимодействия, водородная связь.
4.Энергетика химических превращений. Энергетически е характеристики химических реакций. Первое начало термодинамики. Превращения энергии и работы в химических процесссах. Термохимия. Понятие об энтальпии. Эндо- и экзотермические реакции. Закон Гесса. Стандартное состояние и стандартная энтальпия образования вещества. Расчеты тепловых эффектов реакций. Второе начало термодинамики. Понятие энтропии. Оценка знака изменения энтропии в химических реакциях. Энергия Гиббса. Уменьшение энергии Гиббса как термодинамический критерий возможности самопро-извольного протекания процесса в закрытых системах. Стандартное изменение энергии Гиббса в реакции. Зависимость изменения энергии Гиббса от температуры, давления и концентрации реагирующих веществ. Особенности протекания газофазных, жидкофазных, твердофазных реакций. Роль энтальпийного и энтропийного факторов в определении направления процесса.
5. Химическая кинетика и катализ.Понятие о скорости химической реакции. Скорость химиических реакций в гомогенных и гетерогенных системах, ее зависимость от различных факторов. Закон действующих масс. Порядок и молекулярность химической реакции. Константа скорости химической реакции, ее физический смысл. Правило Вант-Гоффа, энергия актива-ции, уравнение Аррениуса, Понятия об активированном комплексе, механизме химических превращений и цепных реакциях. Катализаторы, их разновидности. Катализ гомогенный и гетерогенный, его механизмы. Роль катализа в технологических процессах. Химическое равновесие. Константа химического равновесия. Смещение химического равновесия.
6. Растворы и другие гетерогенные системы Растворы как многокомпо-нентные системы. Физическая, химическая и физико-химическая теории растворов. Зависимость растворимости веществ от различных факторов. Способы выражения концентрации растворов. Растворы неэлектролитов. Законы Рауля и Вант-Гоффа. Осмос и осмотическое давление. Растворы электролитов. Теория электролитической диссоциации. Теория растворов сильных и слабых электролитов. Ионная сила и активность ио-нов. Равновесие в растворах электролитов. Смещение ионного равновесия. Произведение растворимости. Диссоциация воды, ионное произведение воды, водородный показатель. Кислотно-основные индикаторы. Гидролиз солей и ковалентных соединений. Степень и константа гидро-лиза, влияние различных факторов на них. Смещение равновесия в протоли- тических процессах.
7. Окислительно- восстановительные реакции. Окислительно -восста-новительные процессы как реакции переноса электрона. Важнейшие окис-лители и восстановители. Составление уравнений окислительно-восстано-вительных реакций, протекающих в водных растворах. Метод ионно-моле-кулярных полуреакций. Типы окислительно-восстановительных реакций. Количественные характеристики окислительно-восстановительных пере-ходов. Стандартные условия и стандартный потенциал полуреакции. Урав- нение Нернста. Направление протекания ОВ-реакций.
8. Свойства неметаллов и их соединений. Химия неметаллов. Общая характеристика элементов V-VII групп главных подгрупп, химическая связь в молекулах простых веществ. Нахождение в природе. Получение простых веществ, их химические свойства, изменение химической активности по подгруппе. Водородные соединения. Кислородсодержащие сое динения.
9. Общие свойства металлов. Особенности кристаллического строения металлов: металлические кристаллические решетки, металлическая связь, зонная теория проводимости. Физические свойства металлов. Электродные потенциалы. Ряд стандартных электродных потенциалов. Химические свойства металлов: их взаимодействие с неметаллами, водой, с растворами солей, с растворами щелочей, с оксидами металлов, с кислотами, со смесями кислот, с щелочными расплавами окислителей. Металлы в природе, способы их получения. Коррозия металлов и их защита от коррозии.
10. Комплексные соединения. Теория Вернера. Понятия: комплексное сое-динение, комплексообразователь, лиганд и его дентантность, координацион-ное число, внутренняя и внешняя сферы.Классификация комплексных соединений. Номенклатура комплексных соединений. Квантово-механи-ческие теории комплексных соединений: метод валентных связей и теория кристаллического поля. Свойства комплексных соединений, их диссоциация в растворе. Константы нестойкости и устойчивости комплексных соедине-ний. Методы разрушения комплексных содинений.
11. Химия d- элементов I-VII групп и их соединений. Общая характеристика элементов Нахожде-ние в природе. Химические свойства простых веществ. Оксиды, гидроксиды и соли. Их кислотно- основные и окислительно-восстановительные свойства. Комплексные соединения этих элементов.
12. Химия р- элементов и их соединений. Общая характеристика элемен-тов. Нахождение в природе. Физические и химические свойства.Оксиды, гидроксиды и соли. Роль соединений в окислительно-восстановительных реакциях.

 

Конспект лекций

СТРОЕНИЕ АТОМА

До конца XIX века считалось, что атомы являются неделимыми час-тицами, однако открытие катодных лучей, термоэлектронной эмиссии, фо-тоэффекта, явления радиоактивности, говорило о том, что атом частица сложная. В начале ХХ века появляются первые модели строения атома, которые были предложены Резерфордом, Бором, Зоммерфельдом, однако недостатком всех этих теорий было то, что их авторы пытались применить к микрообъектам законы классической механики, которым они не подчиняют-ся.

Было установлено что атом состоит из ядра и электронной оболочки. Ядро имеет положительный заряд. Величина заряда определяется числом протонов. Каждый протон имеет единичный положительный заряд. Кроме протонов в состав ядра входят электронейтральные частицы - нейтроны. Их общее название - нуклоны.

Число нуклонов называется массовым числом атомов, его обозначают символом А:

А=Z+N

где Z- число протонов, а N- число нейтронов.

Массовое число приблизительно равно массе атома, так как масса электронов незначительна, и ею можно пренебречь. Порядковый номер элемента в таблице Менделеева соответствует числу протонов в ядре (Z), т.е. он соответствует заряду ядра, следовательно разность между массовым числом (А) и его порядковым номером является числом нейтронов (N).

N=A-Z

Для одного и того же элемента атом всегда содержит определённое число протонов, а число нейтронов является различным. Значит один и тот же элемент может иметь разные массовые числа. Атомы, имеющие одинаковое число протонов (Z), но разное число нейтронов (N), называются изотопами.

Массовые числа элементов, указываемые в периодической таблице, яв-ляются средней арифметической величиной масс всех изотопов элементов и поэтому часто имеют дробные значения.

Ядро атома не участвует в химических реакциях. Химические свойства элементов определяются только числом электронов и строением их элект-ронной оболочки.

Современная теория строения атома базируется на законах квантовой механики, одним из важнейших положений которой является представле-ние о двойственной природе быстро движущихся микрообъектов, которые проявляют себя и как частицы, и как волны. Впервые дуализм свойств мик-рочастиц был установлен в 1905 году Энштейном для квантов света, в 1924 году Луи де Бройль распространил эти представления на все микрочастицы, в том числе и на электроны. Математическое выражение уравнения Луи де Бройль имеет вид:

υ = h / mv

Двойственная природа электрона приводит к тому, что его движение не может быть описано определенной траекторией, траектория размывается, возникает «полоса неопределенности» в которой находится электрон, чем точнее мы будем стараться определить его местонахождения, тем меньше узнаем о скорости его движения. Второй закон квантово-волновой теории формулируется следующим образом: Невозможно одновременно с любой заданной точностью определить координаты электрона и его скорость.

Одной из основных характеристик движущегося электрона является волновая функция Y (пси). Сама волновая функция физического смысла не имеет, а |Y| 2 показывает вероятность нахождения электрона в данной точке пространства. Более точным является выражение |Y| 2 dv -это веро-ятность нахождения электрона в элементарном объеме dv, она оценивается уравнением Шреденгера:

НY = ЕY,

где Н – оператор Гамельтона, указывающий на последовательность операций с Y.

Данное уравнение имеет несколько решений, т.е. Y квантуется, однако волновая функция должна удовлетворять ряду условий: она должна быть однозначной, конечной, непрерывной и нормируемой.

В качестве модели состояния электрона в атоме в квантовой механике принято представление об электронном облаке. Пространство вокруг ядра, пребывание электрона в котором составляет 80 % называется атомной орби-талью. Волновая функция, являющаяся решением уравнения Шреденгера есть атомная орбиталь.

Волновая функция Y всегда содержит безразмерные параметры, кото-рые могут принимать ряд целочисленных значений. Эти величины называ-ются квантовыми числами.

n - главное квантовое число, характеризует запас энергии на энергетическом уровне и размеры атомной орбитали. Изменяется от 1 до 7, в электронных формулах обозначается арабскими цифрами;

l – орбитальное квантовое число, характеризует запас энергии на подуровне и форму атомной орбитали. Изменяется от 0 до (n – 1), принимает n значений, в электронных формулах обозначается латинскими буквами s- (l = 0), p- (l =1), d- (l = 2), f (l = 3).

Электроны s-подуровня имеют орбиталь в виде полного шара, р-подуровня в виде объемной восьмерки, а d-подуровня имеют две формы орбиталей: веретена и розетки, у f-электронов орбитали имеют более сложную форму.

m – магнитное квантовое число, показывает число ориентаций атомных орбиталей в пространстве. Изменяется от –l до + l через 0, принимает

(2l + 1) значений. Так шарообразная s-орбиталь может иметь только одну ориентацию, а р - три ориентации, d –пять, f – семь.

Отсюда следует, что s - подуровень состоит из одной орбитали, р-подуровень – из трех орбиталей, d – из пяти орбиталей, f – подуровень из семи орбиталей.

s – спиновое квантовое число показывает направление вращения электрона вокруг своей оси, принимает два значения, равные + 1/ 2.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных