Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Круговые процессы (циклы)




Тепловые машины

Тепловыми машинами в термодинамике называются тепловые двигатели и холодильные машины. Все тепловые машины работают циклически.

Круговыми процессами или циклами тепловых машин называются замкнутые процессы, характеризующиеся возвратом системы (рабочих тел) в исходное состояние.

Различают прямые (циклы тепловых двигателей) и обратные (циклы холодильных машин) круговые процессы (рис. 10).

 

 

Рис. 10. Прямой (а) и обратный (б) циклы тепловых машин

 

Поскольку в результате кругового процесса система (рабочее тело) возвращается в исходное состояние, т.е. возвращаются в исходное состояние все параметры состояния, интегральное изменение любой функции состояния системы будет равно нулю

= 0, (133)

 

где z = p; V(v); Т; U(и); H(h) и т.п.

Круговые процессы, в результате реализации которых получена полезная работа, осуществляются в тепловых двигателях, называются прямыми циклами и в координатах направлены по часовой
стрелке (рис. 10а).

Круговые процессы, в результате которых происходит охлаждение рабочих тел до температуры ниже температуры окружающей среды, осуществляются в холодильных машинах. Такие циклы называются обратными и направлены против часовой стрелки (рис. 10б).

Выражение первого начала термодинамики по внешнему балансу для цикла записывается в следующем виде:

 

. (134)

 

В связи с тем, что для цикла = 0, получаем следующее выражение первого начала термодинамики для цикла

 

. (135)

 

Циклы тепловых машин состоят из отдельных конечных процессов: нагрева, расширения, отвода теплоты и сжатия рабочего тела. Если на графике цикла добавить две касательные адиабаты 1-2 и 3-4, то можно получить границы процессов подвода и отвода теплоты (рис. 10). Подвод теплоты происходит в процессе C-A-D в прямом цикле и в процессе D-B-C в обратном цикле. Процессы, сопровождающиеся отводом теплоты – это процесс D-B-C в прямом цикле и процесс C-A-D в обратном цикле.

Интегральное значение количества теплоты, получаемое рабочим телом в цикле (), и работа в цикле () могут быть представлены в виде следующих соотношений:

 

ç -ú ç; (136)

 

= ú ç =ú ç -ú ç. (137)

 

С учетом соотношений (136), (137) выражение первого начала термодинамики по внешнему балансу для цикла записывается в следующем виде:

 

÷ ç-ú ç = ú ç. (138)

 

В циклах тепловых двигателей работа положительна ( > 0), а в циклах холодильных машин - работа цикла отрицательна (); при этом для них справедливо условие ú ç > ú ç.

Различают три вида циклов тепловых машин: реальные, обратимые и термодинамические.

В реальных циклах тепловых машин имеют место внешняя и внутренняя необратимости.

Внешняя необратимость определяется конечной разностью температур между рабочим телом и источниками теплоты. Этим объясняется то, что реальный цикл теплового двигателя располагается внутри границ температур внешних источников, а реальный цикл холодильной машины - вне границ температур внешних источников (рис. 11).

Внутренняя необратимость обусловлена потерями энергии, связанными с трением, завихрениями и т.д. в процессах цикла.

В обратимых циклах тепловых машин отсутствует внешняя и внутренняя необратимости.

В термодинамических циклах тепловых машин, в отличие от реальных и обратимых циклов, рассматривается не вся система, включающая внешние источники теплоты, а только рабочее тело. При этом в процессах термодинамических циклов отсутствует внутренняя необратимость, то есть все процессы таких циклов являются обратимыми ().

 

 

 

Рис. 11. Термодинамические схемы теплового двигателя (а) и холодильной машины (б): – обратимый цикл, – реальный цикл

 

Эффективность любого реального теплового двигателя определяется коэффициентом полезного действия (КПД).

Коэффициент полезного действия реальных циклов тепловых двигателей численно равен отношению полученной работы к подведенному извне количеству теплоты

 

. (139)

 

Для обратимого цикла теплового двигателя КПД определяется следующим образом:

 

h обр = . (140)

 

Термический коэффициент полезного действия термодинамического цикла теплового двигателя находится из соотношения

 

= . (141)

 

Эффективность циклов холодильных машин оценивается холодильным коэффициентом (). Холодильный коэффициент численно равен отношению количества теплоты, отводимой от холодного источника, к затраченной работе.

Для реального цикла холодильной машины холодильный коэффициент определяется соотношением

 

, (142)

 

для обратимого цикла холодильной машины – из зависимости

 

, (143)

 

а для термодинамического цикла холодильной машины – по соотношению

 

. (144)

 

При механическом сопряжении обратимых теплового двигателя и холодильной машины, соблюдая равенство абсолютных значений работ цикла, подводимой и отводимой теплоты, можно получить математическое условие обратимости цикла

 

= = = (145)

или

. (145а)

 

Особое значение в термодинамике играет цикл Карно, являющийся основой теории тепловых машин.

 

Цикл Карно

Французский инженер Сади Карно в 1824 г. предложил обратимый цикл тепловой машины, рабочим телом в котором является идеальный газ. Цикл Карно осуществляется между двумя внешними источниками постоянных температур Т1 и Т2 и состоит из двух адиабат и двух изотерм (рис. 12).

Подвод теплоты от горячего источника производится на изотерме А-В при температуре Т1, при этом рабочее тело - идеальный газ расширяется и совершается полезная работа. В процессе дальнейшего расширения по адиабате В-С до температуры Т2 также совершается полезная работа. Для осуществления последующих процессов - сжатия C-D по изотерме Т2 с отводом теплоты к холодному источнику и адиабатного сжатия D-A до начальной температуры Т1 работа затрачивается.

В силу того, что в цикле используется идеальный газ, для которого ранее было установлен принцип существования энтропии, этот цикл можно также изобразить и в координатах T-S (рис. 12б).

 

 

Рис. 12. Цикл Карно для теплового двигателя

 

Графически цикл Карно в T-S координатах представляет собой прямоугольник, так как изотермы и адиабаты в этих координатах изображаются прямыми линиями.

Согласно принципу существования энтропии для идеальных газов () (75) интегральные количество подведенной и отведенной теплоты в цикле Карно может быть определено из следующих соотношений:

 

= = ; (146)

 

= = . (147)

 

Для замыкания цикла необходимо, чтобы итоговое изменение энтропии (как функции состояния) в цикле было равно нулю

 

= 0, (148)

 

следовательно

 

. (149)

 

Количества подведенной и отведенной теплоты равны соответственно:

 

, (150)

 

, (151)

 

а работа цикла составляет

 

. (152)

 

Согласно определению КПД термодинамического цикла тепловых двигателей (141) выражение коэффициента полезного действия цикла Карно можно представить в следующем виде:

 

. (153)

 

Соответственно, холодильный коэффициент обратного цикла Карно для холодильной машины определяется соотношением

 

. (154)

 

Полученные соотношения (153) и (154) свидетельствуют о том, что КПД и холодильный коэффициент обратимого цикла Карно зависят только от соотношения абсолютных температур горячего Т1 и холодного Т2 источ-ников теплоты.

Анализ соотношения (153) показывает, что КПД цикла Карно возрастает с увеличением температуры горячего и при понижении температуры холодного источников.

Цикл Карно для теплотехники имеет большое значение. Он позволяет определить наивысшее значение термодинамического КПД теплового двигателя, работающего в диапазоне значений температуры рабочего тела в процессах подвода (Т1) и отвода () теплоты. При этом цикл Карно является эталоном: с КПД цикла Карно сравнивают КПД циклов реальных тепловых двигателей и определяют их термодинамическое совершенство.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных