ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ПЛИН В'ЯЗКИХ РІДИН У БІОЛОГІЧНИХ СИСТЕМАХРух рідких середовищ (крові, лімфи, інтерстиціальних та клітинних рідин) у біологічних системах відіграє важливу роль, забезпечуючи умови нормальної життєдіяльності різних фізіологічних систем. Задача біофізики полягає у вивченні фізичних властивостей рідких середовищ і фізичних основ їх руху. Плин рідин відбувається під дією сил, з'ясування природи яких також є однією з важливих задач біофізики. Рідкі середовища мають ряд специфічних властивостей, зумовлених особливостями їх молекулярної будови. Однією з найважливіших властивостей рідини є в'язкість.
В'язкість рідини У реальних рідких середовищах на границях шарів, що рухаються, діють сили внутрішнього тертя. Можна навести чимало прикладів дії цих сил: вони є причиною падіння тиску вздовж судини при плині крові, саме вони визначають поведінку рідини у судині, що обертається, перешкоджують рухові тіл у рідинах тощо. Досліди свідчать про те, що сили тертя між шарами рідини, які рухаються з різними швидкостями, діють по дотичній до поверхонь цих шарів (мал. 1.7) і спрямовані таким чином, що прискорюють шар, що рухається більш повільно, і гальмують шар, який рухається швидше. Розглянемо поведінку рідини, що знаходиться між двома пластинами, одна з яких нерухома, а інша під дією прикладеної до неї сили F рівномірно рухається зі швидкістю υ (мал. 1.7). Дія дотичного зсуваючого напруження στ= - FT /S викликає деформацію зсуву, причому відносний зсув за одиницю часу γ = dv/dy, який називають градієнтом швидкості, виявляється пропорційним до прикладеного зсувного напруження: . (1.8) Мал. 1.7. Сила тертя між шарами рідини. Мал. 1.8. Профіль швидкостей. Рівняння (1.8), відоме як рівняння Ньютона, описує явище внутрішнього тертя. Таким чином, профіль швидкостей, який ми спостерігаємо у цьому випадку (мал. 1.8), обумовлений тим, що між шарами реальної рідини, що тече, діють сили внутрішнього тертя F, які пропорційні до площі S шарів, що дотикаються, та градієнта швидкості dυ/dy у напрямку, перпендикулярному до напрямку плину рідини. Коефіцієнт пропорційності η в рівнянні Ньютона зветься коефіцієнтом в'язкості (точніше кажучи, зсувної в'язкості) і дорівнює силі внутрішнього тертя, що діє на одиницю площі поверхні шару при градієнті швидкості, який дорівнює одиниці. Розмірність коефіцієнта в'язкості η у системі СІ [Па*с]. Досить часто використовується ще й позасистемна одиниця в'язкості Пуаз (П), яка зв'язана з Па*с співвідношенням 1П= 0.1 Па*с. Так, в'язкість дистильованої води при кімнатній температурі дорівнює приблизно 10-3 Па*с = 10-2 П, тобто Цводи ≈ 1 мПа*с = 1сП. Зручно користуватися безрозмірним коефіцієнтом в'язкості, що зветься відносною в'язкістю ηвідн. Відносна в'язкість дорівнює відношенню коефіцієнта в'язкості даної рідини до коефіцієнта в'язкості дистильованої води при одній і тій самій температурі: (1.9) У гідродинаміці користуються також і кінематичною в'язкістю v рідини, що являє собою відношення коефіцієнта в'язкості до густини (1.10) Кінематична в'язкість v має розмірність [v] = м2/с. В'язкість рідини є динамічна властивість, залежить від природи рідини, температури і для багатьох рідин також від умов плину. Моделі рідин. Описуючи рух рідких середовищ, використовують різні моделі рідин. Найбільш простою є модель ідеальної рідини, яка не підлягає стисненню (ρ= const) і в ній відсутні сили внутрішнього тертя (η= 0). Ця модель використовується для отримання найбільш простих рівнянь руху рідини. Неідеальні рідини, в яких сили внутрішнього тертя описуються рівнянням Ньютона, звуться ньютонівсь- кими. Для ньютонівських рідин коефіцієнт в'язкості η залежить лише від температури та природи рідини і не залежить від умов плину. До ньютонівських рідин можна віднести воду, розчини електролітів, ртуть, гліцерин, спирти. Існують рідини, коефіцієнт в'язкості яких залежить від умов плину, а саме, змінюється із зміною швидкості деформації зсуву dυ/dy внаслідок перебудови внутрішньої структури, обумовленої напруженням зсуву при плині рідини. Такі рідини звуться неньютонівськими. До них відносять розчини білків, полімерів, деякі суспензії. Описуючи динаміку руху біологічних рідин, розглядають умови їх плину і, залежно від них, обирають ту чи іншу модель рідини - від ідеальної до реальної.
В'язкість крові Кров являє собою приклад складної за своїм вмістом рідини. Вона є суспензією форменних елементів (еритроцитів, лейкоцитів, тромбоцитів) у водному колоїдному розчині - плазмі, сумарна концентрація білків у якій становить 6-9%. Експеримент виявив суттєву залежність в'язкості крові від її складу, що визначається показником гематокриту Не (мал. 1.9а), який дорівнює відношенню об'єму форменних елементів Vф до об'єму плазми крові Vпл: (1.11) Оскільки об'єм форменних елементів в основному припадає на еритроцити, показник гематокриту характеризує вміст еритроцитів у крові. Як свідчить наведена на малюнку залежність ηвідн = = f(Не), в'язкість крові змінюється у досить широкому діапазоні по відношенню до норми (N). Вона зростає при поліцитемії і зменшується при анемії. Відомо декілька емпіричних формул, що зв'язують коефіцієнт в'язкості крові з показником гематокриту: 1 (1.12) де η о - в'язкість плазми, α, β, γ- емпіричні константи, значення яких залежить від концентрації та форми суспен-зованих елементів. Дослідження залежності в'язкості крові від швидкості деформації зсуву (градієнта швидкості) свідчать про те, що кров не є ньютонівською рідиною. При великих градієнтах швидкості (наприклад, в артеріальних судинах) в'язкість крові наближається до в'язкості води, у той час як при малих значеннях швидкості деформації зсуву в'язкість у п'ять і більше разів перевищує в'язкість води (мал. 1.9б). Мал. 1.9. Зміна в'язкості крові при зміні: а) форменного складу крові, б) швидкості деформації зсуву. Величина відносної в'язкості крові може бути використана у діагностиці захворювань (див. табл. 1.1). Залежність коефіцієнта в'язкості від градієнта швидкості dυ/dy обумовлена здатністю еритроцитів до агрегації - утворенню "монетних стовпчиків" та їх конгломератів. Із збільшенням градієнта швидкості стовпчики руйнуються, і коефіцієнт в'язкості зменшується внаслідок дезагрегації та деформації еритроцитів. Таблиця 1.1.
Зменшення в'язкості крові при її переході з венозного русла в артеріальне фізіологічне виправдане. У цьому випадку значно зменшуються витрати м'язової енергії міокарду на просування крові вздовж артеріального русла, в якому величини швидкостей деформації зсуву (а отже і сили внутрішнього тертя) досить значні (вони у сотні разів перебільшують значення останніх у венозній ділянці судинної системи).
Не нашли, что искали? Воспользуйтесь поиском:
|