Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






В'язко-пружні властивості біологічних тканин




Біологічні структури (м'язи, судини, сухожилля, ткани­ни легенів, шкіра тощо) являють собою в'язко-пружні системи, їх поведінка вивчається на моделях, що вміщують пружні (Е) та в'язкі (η) елементи, у деяких випадках до них додають і елементи зовнішнього тертя (К).

Мал. 1.10. Механічні моделі тканин: 1) пружний елемент; 2) в'язкий елемент; 3) елемент внутрішнього тертя; 4) послідовне з'єднання в'язкого та пружного елементів; 5) паралельне з'єднання в'язкого та пружного елементів.

Пружний елемент являє собою ідеальну пружину, для якої виконується закон Гука. В'язкий елемент може бути поданий у вигляді циліндра, який заповнений в'язкою ріди­ною з нещільним поршнем. Для витягування поршня не­обхідно прикласти деяку зовнішню силу, яка компенсує си­ли в'язкого тертя, що виникають при плині рідини крізь за­зор.

Напруження, що створюються цими елементами під дією зовнішніх сил, дорівнюють:

· для пружного елементу;

· для в’язкого елементу;

· ~ KFn для елементу зовнішнього тертя при силі нормального тиску Fn і коефіцієнті тертя К.

Для відтворення механічних властивостей біологічних тканин використовують моделі, що складаються з цих еле­ментів. Найпростішими моделями є тіло Максвелла і тіло Фойгта, що являють собою послідовне і паралельне з'єднання пружного та в'язкого елементів (див. мал. 1.10). Ці моделі дозволяють відтворити такі динамічні властивості тканин, як повзучість та релаксація напруження.

Повзучість - це явище зміни з часом розмірів зразка в умовах дії постійного напруження. Якщо у біологічних тка­нинах швидко створити, а потім підтримувати постійним деяке напруження, то з часом відбувається поступове по­довження зразка аж до розриву тканин, навіть при умові, що постійне напруження має менше значення, ніж межа міцності матеріалу. Динаміку повзучості подано на мал. 1.1 la. Зміна розмірів відбувається тим швидше, чим більше напруження, що підтримується у зразку (порівняйте криві 1, 2 та 3, для яких (σ1 > σ2 > σ3).

Мал. 1.11. Динамічні властивості біологічних тканин: а) повзучість - зміна деформації тіла за умови постійного напружен­ня σ (σ1 > σ2 > σ3); б) релаксація напруження - зменшення σ в умо­вах постійної деформації.

Релаксація напруження - явище зменшення з часом ве­личини напруження у зразку при підтримці постійної вели­чини деформації. Якщо швидко розтягнути зразок і, підтри­муючи постійною отриману деформацію, вимірювати на­пруження в ньому протягом деякого часу, помітним стане його зменшення з часом (мал. 1.116). Пунктирними лініями на обох мал. 1.11 відтворено поведінку чисто пружних тіл. Релаксація напруження і повзучість суто динамічні процеси - час їх існування вимірюється секундами або хвилинами. Наприклад, для м'язів час зменшення напруження на 40% становить близько 10 секунд.

Ці процеси легко пояснюються механічними моделями, наведеними на мал. 1.10 (позиція 4). Спочатку під дією зо­внішніх сил деформується пружний елемент, а потім почи­нається "плин" в'язкого елементу, змінюється його розмір, що викликає зміну як довжини, так і напруження. За допомогою моделі Максвелла легко отримати експоненці­альний закон релаксації напруження

, (1.13)

де α- постійна часу релаксації, σ0 = Еε- початкове напру­ження.

Явище повзучості також можна описати експоненціаль­ним законом

(1.14)

де ε0= σ0/Е - початкова деформація, τ- характерний час процесу повзучості, що дорівнює відношенню коефіцієнта в'язкості і модуля Юнга. Формулу τ= η/Е легко отримати з міркувань розмірності. Дійсно, розмірність η є Па*с, a розмірність Е дорівнює Н/м2 = Па. Тому єдина комбінація величин ηі Е, що має розмірність часу [τ] = с, є їх відно­шення η/е.

Мал. 1.12. Приклади механічних моделей біологічних тканин: а) трьохелементна модель для дослідження механічних властивостей 1в'язко-пружних тканин; б) трьохелементна модель м'язів, що включає скорочувальний елемент С.

Модель Фойгта дозволяє пояснити поступове зростання з часом напруження у зразку, якщо до тіла прикласти зусилля, що змінюється стрибкоподібне. Динаміка експо­ненціального зменшення напруження чи деформації відріз­няється від експерименту. Кращих результатів можна досягти, якщо розглядати моделі, що включають до себе кілька пружних та в'язких елементів. Приклад однієї з таких моделей наведено на мал. 1.12. На цьому ж малюнку наведено одну з найпростіших моделей м'язів, що включає скорочувальний елемент С, котрий являє собою механохімічний конвертор, який перетворює енергію хімічних реакцій на механічну енергію. Ця механічна енергія витрачається на створення напруження і здійснення роботи по скороченню м'язів.

Наявність в'язко-пружних елементів, з'єднаних зі ско­рочувальними елементами, забезпечують ті гнучкі функці­ональні властивості, які притаманні цілому ряду фізіоло­гічних систем (наприклад, серцево-судинній, м'язовій і ряду інших) для виконання призначених їм функцій в умовах зміни як властивостей самої системи, так і зовнішних навантажень. Це явище притаманне системам, які адаптуються. Так, зміна тонусу судин еласто-м'язового типу дозволяє реалізувати таке явище, як депонування крові, при якому значне збільшення об'єму судини можливе лише при повній релаксації стінки судини і зменшенні її пружності. Навпаки, при необхідності вигнання крові з депо об'єм судин зменшується, релаксація напруження

відбувається при інших розмірах судини, у цьому випадку зростає і модуль об'ємної пружності судин (їх тонус).

 




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных