Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Механические колебания и волны.




 

Колебания – периодически повторяющиеся движения или изменения состояния системы.

Гармонические колебания – такой вид колебаний, при котором колеблющаяся величина изменяется в зависимости от времени по закону синуса или косинуса.

 

Квазиупругие силы – силы, неупругие по природе, но аналогичные по свойствам силам, возникающим при малых деформациях упругих тел.

 
 


 

0 Х

 

Согласно закону Гука: Fупр = - kx.

Согласно 2 закону Ньютона: , но , тогда , но , (W – собственная частота), тогда (дифференциальное уравнение 2 порядка).

Решение: гармонический закон: , где - фаза колебаний (рад), - начальная фаза (при t = 0), - собственная частота колебаний, А – амплитуда колебаний.

Частота колебаний: . Период колебаний: . (рад/с)

Скорость материальной точки: .

Ускорение материальной точки: .

Полная энергия колеблющегося тела:

 

Затухающие колебания – такой вид колебаний, которые существуют в реальных системах, с учётом сил трения и сопротивления.

В системе действуют квазиупругие силы, силы сопротивления (трения) => закон Ньютона приобретает вид: , где , где r – коэфф. трения

Подставим: или , где , а , где - коэффициент затухания, - собственная частота.

Решение: .

Амплитуда: .

Период: .

Время релаксации – это время, в течении которого амплитуда уменьшается в е раз. , но . Это возможно лишь при , т.е. .

Степень затухания характеризуется логарифмическим декрементом затухания, т.е. величиной, равной натуральному логарифму отношения двух последовательных амплитуд колебаний, разделённых интервалом времени, равным периоду колебаний:

За время совершается колебаний.

 

Вынужденные колебания – это колебания, возникающие в системе при участии внешней силы, изменяющейся по периодическому закону.

 

В системе действуют квазиупругие силы, силы трения и внешние силы.

Внешняя сила: , где F0 – амплитуда, W – собственная частота колебаний.

Второй закон Ньютона:

, или , где .

Решение: , где .

Частота вынужденного колебания = частоте вынуждающей силы.

Амплитуда вынужденных колебаний имеет максимальное значение при некоторой определённой частоте вынуждающей силы, называемой резонансной.

Резонанс – явление достижения максимальной амплитуды для заданных собственной частоты и коэффициента затухания.

, а амплитуда: .

А

 

 

B=0

B=1

 

B=2

 

w2w1w0 W

Автоколебания – частный случай вынужденных колебаний, происходят тогда, когда сама колебательная система управляет внешними силами. При этом легче достигается резонанс, а работы затрачивается меньше. В живых организмах колебания по принципу автоколебаний. Схема:

 
 

 

 


 

Волна – процесс распространения колебаний в упругой среде.

Механическая волна – механические возмущения, распространяющиеся в пространстве и несущие энергию.

Виды волн:

1) продольные – частицы среды совершают колебания по направлению распространения волны – во всех упругих средах;

волна,

x

 

 

направление колебаний

точек среды

 

Nt

 

2) поперечные – частицы среды совершают колебания перпендикулярно направлению распространения волны – на поверхности жидкости.

X

волна

 

 

t

 

Виды механических волн:

1) упругие волны – распространение упругих деформаций;

2) волны на поверхности жидкости.

 

Характеристики волн:

1) Скорость - - расстояние, которое проходит волна за единицу времени (1 сек.). В однородной среде скорость постоянна. Скорость зависит от свойств среды – упругости и плотности (чем больше плотность и упругость среды, тем больше скорость волны). Скорость в твёрдых телах выше скорости в жидких средах, а в жидких средах – выше, чем в газах. Скорость волны – отношение длины волны к периоду: .

2) Длина волны - - расстояние, которое прошла волна за время, равное периоду колебаний – расстояние между 2 точками, фазы которых в один и тот же момент времени отличаются на 2 . Единица измерения длины волны – метры.

3) Фронт волны – геометрическое место точек, колеблющихся в одинаковой фазе.

4) Уравнение волны – зависимость смещения колеблющейся точки, участвующей в волновом процессе, от координаты её равновесного положения и времени: .

 
 


Y

Б

t1 t2

 

А Б` X

 

Х

Пусть А колеблется по закону: .

Тогда В колеблется с запаздыванием на угол , где , т.е.

.

5) Энергия волны.

- полная энергия одной частицы. Если частиц N, то , где - эпсилон, V – объём.

Эпсилон – энергия в единице объёма волны – объёмная плотность энергии.

Поток энергии волн равен отношению энергии, переносимой волнами через некоторую поверхность, к времени, в течение которого этот перенос осуществлён: , ватт; 1 ватт = 1Дж/с.

6) Плотность потока энергии – интенсивность волны – поток энергии через единицу площади - величина, равная средней энергии, переносимой волной в единицу времени за единицу площади поперечного сечения.

 

[Вт/м2]

.

Вектор Умова – вектор I, показывающий направление распространения волн и равный потоку энергии волн, проходящему через единичную площадь, перпендикулярную этому направлению:

.

 

Физические характеристики волны:

1. Колебательные:

a. амплитуда

b. частота

c. фаза

2. Волновые:

a. длина волны

b. скорость волны

c. интенсивность

Сложные колебания (релаксационные) – отличающиеся от синусоидальных.

Преобразование Фурье – любую сложную периодическую функцию можно представить суммой нескольких простых (гармонических) функций, периоды которых кратны периоду сложной функции – это гармонический анализ. Происходит в анализаторах. Итог – гармонический спектр сложного колебания:

А

 

0

Звук – колебания и волны, которые действуют на ухо человека и вызывают слуховое ощущение.

Звуковые колебания и волны – частный случай механических колебаний и волн. Виды звуков:

1) Тоны – звук, являющийся периодическим процессом:

a. простой – гармонический - камертон

b. сложный – ангармонический – речь, музыка

Сложный тон может быть разложен на простые. Наименьшая частота такого разложения – основной тон, остальные гармоники (обертоны) – имеют частоты, равные 2 и другие. Набор частот с указанием их относительной интенсивности – акустический спектр.

2) Шум – звук со сложной неповторяющейся временной зависимостью (шорох, скрип, аплодисменты). Спектр – сплошной.

 

Физические характеристики звука:

1) Частота звука: от 16 до 20000 Гц.

2) Связь звукового давления и интенсивности: . Интенсивность звука находится в очень широком пределе.

3) Порог слышимости – минимальная интенсивность, которая вызывает слуховое ощущение. Для частоты 1000 Гц – это 10-12 Вт/м2.

4) Порог болевого ощущения – интенсивность, которая, действуя на ухо, вызывает чувство боли. Для 1000Гц – это 102 Вт/м2.

5) Скорость звука различна в разных средах. В воздухе 330 м/с.

6) Акустический спектр – набор частот, входящих в сложны тон с указанием их амплитуд.

 

Характеристики слухового ощущения:

1) Высота – определяется частотой звуковой волны. Чем больше частота, тем выше тон. Звук большей интенсивности – более низкий.

2) Тембр – определяется акустическим спектром. Чем больше тонов, тем богаче спектр.

3) Громкость – характеризует уровень слухового ощущения. Зависит от интенсивности звука и частоты. Психофизический закон Вебера-Фехнера: если увеличивать раздражение в геометрической прогрессии (в одинаковое число раз), то ощущение этого раздражения возрастёт в арифметической прогрессии (на одинаковую величину).

, где Е – громкость (измеряется в фонах); - уровень интенсивности (измеряется в белах). 1 бел – изменение уровня интенсивности, которое соответствует изменению интенсивности звука в 10 раз. K – коэффициент пропорциональности, зависит от частоты и интенсивности.

Зависимость между громкостью и интенсивностью звука – кривые равной громкости, построенные на экспериментальных данных (создают звук частотой 1 кГц, меняют интенсивность, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука). Зная интенсивность и частоту можно найти фон.

 

Аудиометрия – метод измерения остроты слуха. Прибор – аудиометр. Полученная кривая – аудиограмма. Определяется и сравнивается порог слухового ощущения на разных частотах.

Шумометр – измерение уровня шума.

 

В клинике: аускультация – стетоскоп/фонендоскоп. Фонендоскоп – полая капсула с мембраной и резиновыми трубками.

Фонокардиография – графическая регистрация фонов и шумов сердца.

Перкуссия.

 

Ультразвук – механические колебания и волны с частотой выше 20кГц до 20 МГц. УЗ-излучатели – электромеханические излучатели, основанные на пьезоэлектрическом эффекте (переменный ток к электродам, между которыми - кварц).

Длина волны УЗ меньше длины волны звука: 1,4 м – звук в воде (1 кГц), 1,4 мм – ультразвук в воде (1 МГц). УЗ хорошо отражается на границе кость-надкостница – мышца. УЗ в тело человека не проникнет, если не смазать маслом (воздушный слой). Скорость распространения УЗ зависит от среды. Физические процессы: микровибрации, разрушение биомакромолекул, перестройка и повреждение биологических мембран, тепловое действие, разрушение клеток и микроорганизмов, кавитация. В клинике: диагностика (энцефалограф, кардиограф, УЗИ), физиотерапия (800 кГц), ультразвуковой скальпель, фармацевтическая промышленность, остеосинтез, стерилизация.

 

Инфразвук – волны с частотой меньше 20 Гц. Неблагоприятное действие – резонанс в организме.

 

Вибрации. Полезное и вредное действие. Массаж. Вибрационная болезнь.

 

Эффект Доплера – изменение частоты волн, воспринимаемых наблюдателем (приёмником волн), вследствие относительного движения источника волн и наблюдателя.

1 случай: Н приближается к И.

2 случай: И приближается к Н.

3 случай: приближение и отдаление И и Н друг от друга:

Система: генератор УЗ – приёмник – неподвижна относительно среды. Движется объект. Он принимает УЗ с частотой , отражает её, посылая на приёмник, который получает УЗ волну с частотой . Разница частот – доплеровский сдвиг частоты: . Используется для определения скорости кровотока, скорости движения клапанов.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных