Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Законы Кирхгофа для мгновенных значений цепей изменяющегося тока 3 страница




Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.

Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону: .

Полное сопротивление контура, его составляющие и зависимость их от частоты – ДОДЕЛАТЬ111

 

Резонанс напряжений - резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает ссобственной частотой контура. Пусть имеется колебательный контур с частотой собственных колебаний f, и пусть внутри него работает генератор переменного тока такой же частоты f.

В начальный момент конденсатор контура разряжен, генератор не работает. После включения напряжение на генераторе начинает возрастать, заряжая конденсатор. Катушка в первое мгновение не пропускает ток из-за ЭДС самоиндукции. Напряжение на генераторе достигает максимума, заряжая до такого же напряжения конденсатор.

Далее: конденсатор начинает разряжаться на катушку. Напряжение на нем падает с такой же скоростью, с какой уменьшается напряжение на генераторе.

Далее: конденсатор разряжен до нуля, вся энергия электрического поля, имевшаяся в конденсаторе, перешла в энергию магнитного поля катушки. На клеммах генератора в этот момент напряжение нулевое.

Далее: так как магнитное поле не может существовать стационарно, оно начинает уменьшаться, пересекая витки катушки в обратном направлении. На выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе противоположного знака, причем с той же скоростью, с какой катушка заряжает конденсатор.)

Далее: катушка перезарядила конденсатор до максимального напряжения. Напряжение на генераторе к этому моменту тоже достигло максимального.

Возникла следующая ситуация. Конденсатор и генератор соединены последовательно и на обоих напряжение, равное напряжению генератора. При последовательном соединении источников питания их напряжения складываются.

Следовательно, в следующем полупериоде на катушку пойдет удвоенное напряжение (и от генератора, и от конденсатора), и колебания в контуре будут происходить при удвоенном напряжении на катушке.

В контурах с низкой добротностью напряжение на катушке будет ниже удвоенного, так как часть энергии будет рассеиваться (на излучение, на нагрев) и энергия конденсатора не перейдет полностью в энергию катушки). Соединены как бы последовательно генератор и часть конденсатора.

Признаки резонанса – ДОДЕЛАТЬ111

 

Резонанс (фр. resonance, от лат. resono - откликаюсь) - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частоты внешнего воздействия с некоторыми значениями (резонансными частотами), определяемыми свойствами системы.

 

F=1/(2π×√L×C), где

 

F - Резонансная частота, Гц)

L - Индуктивность, (Гн)

C - Ёмкость, (Ф)

Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний и так далее.

Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) - фазе.

Сумма (или разность) двух и более колебаний на векторной диаграмме представлена при этом (геометрической) суммой (или разностью) векторов этих колебаний. Мгновенное значение искомой величины определяется при этом проекцией вектора суммы на ось Оx, амплитуда - длиной этого вектора, а фаза - углом его поворота относительно Ox.

Векторные диаграммы можно считать вариантом (и иллюстрацией) представления колебаний в виде комплексных чисел. При таком сопоставлении ось Ox соответствует оси действительных чисел, а ось Oy - оси чисто мнимых чисел (положительный единичный вектор вдоль которой есть мнимая единица).

Тогда вектор длиной A, вращающийся в комплексной плоскости с постоянной угловой скоростью ω с начальным углом φ0 запишется как комплексное число

а его действительная часть

-есть гармоническое колебание с циклической частотой ω и начальной фазой φ0.

Хотя, как видно уже из вышесказанного, векторные диаграммы и комплексное представление колебаний теснейшим образом связаны и по сути представляют собой варианты или разные стороны одного и того же метода, они, тем не менее, обладают своими особенностями и могут применяться и по отдельности.

· Метод векторных диаграмм может излагаться отдельно в курсах электротехники или элементарной физики, если по тем или иным причинам (обычно связанным с умеренным уровнем математической подготовки учащихся и недостатком времени) надо избежать использования комплексных чисел (в явном виде) вообще.

· Метод комплексного представления (который при необходимости или желании может включать и графическое представление, что, правда, совершенно не обязательно и иногда излишне) вообще говоря более мощен, т.к. естественно включает в себя, например, составление и решение систем уравнений любой сложности, в то время как метод векторных диаграмм в чистом виде всё же ограничен задачами, подразумевающим суммирование, которое можно изобразить на одном чертеже.

· Однако метод векторных диаграмм (в чистом виде или в качестве графической составляющей метода комплексного представления) - более нагляден, а значит в некоторых случаях потенциально более надежен (позволяет до некоторой степени избежать грубых случайных ошибок, которые могут встречаться при абстрактных алгебраических вычислениях) и позволяет в некоторых случаях достичь в каком-то смысле более глубокого понимания задачи.

52. Последовательный колебательный контур- Вопрос № 51

 

Коэффициентом мощности или cos φ электрической сети называется отношение активной мощности к полной мощности нагрузки расчетного участка.

 

cos φ = P/S, где:

 

· cos φ – коэффициент мощности;

· Р - активная мощность Вт;

· S - полная мощность ВА;

Коэффициент мощности можно определить как расчетным путем, так и измерить специальными приборами. Только в том случае, когда нагрузка имеет исключительно активный характер, cos φ равен единице. В основном же, активная мощность меньше полной и поэтому коэффициент мощности меньше единицы.

Следует учитывать, что низкий коэффициент мощности потребителя приводит:

· к необходимости увеличения полной мощности трансформаторов и электрических станций, а также к увеличению сечения питающих линий электропередач;

· к понижению коэффициента полезного действия вырабатывающих и трансформирующих элементов цепи;

· к увеличению потерь мощности и напряжения в проводах. При одних и тех же значениях мощности и напряжения уменьшение коэффициента мощности сопровождается увеличением тока в проводах, вследствие чего возрастают потери на нагрев, что, в свою очередь, приводит к падению напряжения в сети;

Чем меньше коэффициент мощности сети, тем менее загружена сеть активной мощностью и тем меньше коэффициент полезного действия использования сети. В связи с этим необходимо, чтобы как можно большую часть в полной мощности составляла именно активная мощность, а не реактивная, в этом случае коэффициент мощности будет ближе к единице.

Чтобы лучше понять данный вопрос, давайте рассмотрим причины низкого коэффициента мощности:

· Недогрузка асинхронных электродвигателей. Потребляемая активная мощность уменьшается пропорционально нагрузке, а реактивная мощность изменяется меньше;

· Неправильный выбор типа электродвигателя. Двигатели быстроходные и большой мощности имеют более высокий коэффициент мощности, чем тихоходные и маломощные;

· Повышение напряжения в сети. Ведет к увеличению намагничивающего тока индуктивных потребителей реактивной составляющей полного тока;

Для увеличения коэффициента мощности можно:

· изменить мощность и тип устанавливаемых электродвигателей;

· увеличить загрузку электродвигателей в процессе работы;

· уменьшить время работы в холостом режиме оборудования потребляющего индуктивную мощность;

· установить установку компенсации реактивной мощности с конденсаторами производства «Нюкон»;

 

Коэффициент передачи (также коэффициент преобразования) — отношение напряжения на выходе той или иной системы, предназначенной для передачи электрических сигналов, к напряжению на входе. В частном случае, когда значения выходного и входного сигнала являются однородными, коэффициент передачи называют коэффициентом усиления. KП = UВЫХ/ UВХ. Коэффициент передачи часто выражают в логарифмическом виде, как 20 lg (UВЫХ / UВХ), дБ.

Добротность – ДОДЕЛАТЬ111

Амплитудно-частотная характеристика (АЧХ) — функция, показывающая зависимость модуля некоторой комплекснозначной функции от частоты. Также может рассматриваться АЧХ других комплекснозначных функций частоты, например, спектральной плотности мощности сигнала.

Фазо-частотная характеристика (ФЧХ) — частотная зависимость разности фаз между выходным и входным сигналами.

Для линейной электрической цепи, зависимость сдвига по фазе между гармоническими колебаниями на выходе и входе этой цепи от частоты гармонических колебаний на входе.

Часто ФЧХ используют для оценки фазовых искажений формы сложного сигнала, вызываемых неодинаковой задержкой во времени его отдельных гармонических составляющих при их прохождении по цепи

В теории управления ФЧХ звена определяется из равенства её тангенса отношению мнимой части АФЧХ к действительной:

53. Последовательный колебательный контур – Вопрос № 51

Расстройка – ДОДЕЛАТЬ111

Избирательностью называют свойство колебательного контура выделять колебания одной избранной частоты. Различные контуры обладают неодинаковой избирательностью. Дело в том, что если на контур воздействуют два сигнала, частоты которых близки, то он может оказаться не в состоянии разделить эти сигналы. Не следует думать, что колебательный контур увеличивает напряжение или ток только в случае точного совпадения его частоты с собственной частотой колебательного контура. Если частота источника, подключенного к контуру, незначительно отличается от резонансной частоты, то напряжение или ток этого источника все же будут увеличены контуром, хотя и в меньшей степени, чем при резонансе. Поэтому всякий колебательный контур выделяет в действительности не одну частоту, а целую полосу частот. Полоса частот, выделяемых колебательным контуром, называется полосой пропускания колебательного контура. Ширина полосы пропускания измеряется в герцах, килогерцах, мегагерцах. Она зависит от добротности колебательного контура: чем выше добротность, тем уже полоса пропускания. Ширину полосы пропускания можно подсчитать по следующей простой формуле. Понятно, что чем уже полоса пропускания, тем лучше избирательность контура, тем лучше он разделяет сигналы, имеющие близкие частоты, тем меньше воздействуют на него всевозможные помехи.

 

Если соединить последовательно электрический конденсатор и катушку индуктивности, то для синусоидального сигнала определенной частоты указанная схема будет демонстрировать нулевое реактивное сопротивление. Этот эффект называется резонансом колебательного контура, сама схема из конденсатора и индуктивности - последовательным колебательным контуром, а частота, на которой проявляется этот эффект - частотой резонанса.

Хотя и катушка индуктивности, и конденсатор имеют некоторое реактивное сопротивление, вместе они реактивного сопротивления не проявляют. Причина проста. Конденсатор и катушка накапливают и отдают энергию, но делают это по-разному. В тот момент, когда катушка накапливает энергию, конденсатор ее отдает, и наоборот. Конечно, этот эффект проявляется только для синусоидального сигнала, на определенной частоте, в установившемся режиме. Если частота сильно отличается от резонансной, то схема теряет свои чудесные качества и проявляет себя, как катушка и конденсатор. Если последовательный колебательный контур не был запитан, а теперь на него подали синусоидальный сигнал резонансной частоты, то сопротивление будет уменьшаться постепенно, по мере перехода контура в стационарный режим работы.

Если пропускать через последовательный колебательный контур синусоидальный электрический ток резонансной частоты, то падение напряжения на контуре будет равно нулю. Но падение напряжения на конденсаторе отдельно, индуктивности отдельно будет иметь место. Просто эти напряжения компенсируют друг друга в каждый момент времени. Напряжения на конденсаторе и катушке могут быть очень значительными. Одной из популярных ошибок при проектировании последовательного колебательного контура является неправильная оценка напряжения на конденсаторе. Напряжение может в разы, десятки, сотни раз превышать напряжение источника питания. На основе этого эффекта даже разработаны схемы повышающих преобразователей напряжения.

[ Амплитудное значение напряжения на конденсаторе, В ] = [ Амплитудное значение силы тока через контур, А ] * [ ZC ], где [ ZC ] = 1 / (2 * ПИ * [ Частота сигнала, Гц ] * [ Емкость конденсатора, Ф ])

Необходимо также обратить внимание, чтобы ток через последовательный контур не приводил к насыщению сердечника катушки индуктивности.

В схемотехнике последовательный колебательный контур применяется, если необходимо пропустить сигнал определенной частоты и отфильтровать все другие. Колебательные контуры бывают небольшие, рассчитанные на работу с небольшими токами и напряжениями, например, во входных и внутренних цепях радиоприемника. Но бывают и силовые, рассчитанные на большие токи и напряжения, например, в радиопередатчиках, силовых резонансных фильтрах и т. д.

54. Параллельный колебательный контур – Вопрос № 51

Метод активных и реактивных составляющих токов

Этот метод предусматривает использование схемы замещения с последовательным соединением элементов (рис 2.1). В данном случае три параллельные ветви рассматриваются как три отдельные неразветвлённые цепи, подключенные к одному источнику с напряжением U. Поэтому в начале расчёта определяем полные сопротивления ветвей:

Z1 = = = 3,61 Ом;

Z2 = = = 18,4 Ом;

Z3 = XL3 = 18 Ом.

Углы сдвига фаз между напряжениями и токами в ветвях определяются также по синусу (или тангенсу):

Резонанс токов Общая электротехника и электроника

Sinφ1 = -XC1 / Z1 = 3 / 3,61 = -0,831; φ1 = -56,2; Cosφ1 = 0,556;

Sinφ2 = -XC2 / Z2 = -12 / 18 = -0,652; φ2 = -40,7; Cosφ2 = 0,758;

Sinφ3 = 1; φ3 = 90; Cosφ3 = 0.

Затем можно определять токи в ветвях по закону Ома:

I1 = U / Z1 = 65 / 3,61 = 18 А.;

I2 = U / Z2 = 65 / 18,4 = 3,53 А.;

I3 = U / Z3 = 65 / 18 = 3,61 А.

Для определения тока в неразветвлённой части цепи нужно знать активные и реактивные составляющие токов в ветвях и неразветвленной части цепи:

Ia1 = I1 * Cosφ1 = 18 * 0,556 = 10 A;

Ip1 = I1 * Sinφ1 = 18 * (-0,83) = -14,9 A;

Ia2 = I2 * Cosφ2 = 3,53 * 0,758 = 2,68 A;

Ip2 = I2 * Sinφ2 = 3,53 * (-0,652) = -2,3 A;

Ip3 = I3 = 3,61 A.

Активная и реактивная составляющие тока в неразветвлённой части цепи:

Ia = Ia1 + Ia2 = 10 + 2,68 = 12,68 A;

IP = IP1 + IP2 + IP3 = –14,9 – 2,3 + 3,61 = -13,59 A.

Полный ток в неразветвлённой части цепи:

I = = = 18,6 A.

Угол сдвига фаз на входе цепи:

Sinφ = IP / I = –13,59 / 18,6 = –0,7312; φ = -46,98; Cosφ = 0,6822.

 

Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику.
При Этом реактивные сопротивления катушки индуктивности и конденсатора должны быть равны - при таких условиях возникает резонанс...
Поскольку резонанс будет происходить только при определенной частоте - то такой контур будет считаться фильром, который будет пропускать какую-то "одну" частоту и радерживать все остальные.

Применение
-Высокодобротный колебательный контур оказывает току определенной частоты f значительное сопротивление. Вследствие чего явление резонанса токов используется в полосовых фильтрах как электрическая «пробка», задерживающая определенную частоту.
-Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции.
-Колебательный контур, работающий в режиме резонанса токов, является одним из основных узлов электронных генераторов.

 

Признаки резонанса – ДОДЕЛАТЬ111

 

Резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно, так и параллельно. При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

,

где ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.

 

Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний и так далее.

Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) - фазе.

Сумма (или разность) двух и более колебаний на векторной диаграмме представлена при этом (геометрической) суммой[1] (или разностью) векторов этих колебаний. Мгновенное значение искомой величины определяется при этом проекцией вектора суммы на ось Оx, амплитуда - длиной этого вектора, а фаза - углом его поворота относительно Ox.

 

55. Параллельный колебательный контур – Вопрос № 51

Полное эквивалентное сопротивление контура при резонансе и при расстройках, его активная и реактивная составляющие. – ДОДЕЛАТЬ111

Эквивалентная добротность параллельного контура с учётом влияния внутреннего сопротивления генератора – ДОДЕЛАТЬ111

56. Параллельный колебательный контур – Вопрос № 51

Амплитудно-частотные и фазо-частотные характеристики параллельного контура – Вопрос № 52

Во время передачи тех или иных сигналов ток высокой частоты в антенне радиопередатчика состоит из нескольких токов различной частоты. Такой же сложный характер имеют электромагнитные волны, распространяющиеся от антенны передатчика, и токи, возникающие под действием радиоволн в приемной антенне.

Для каждого вида передачи (радиотелефония, радиотелеграфия, телевизионная передача и т. д.) частоты этих токов занимают определенную полосу. При радиовещании на средних волнах она составляет примерно 9 кгц, т. е. радиовещательный передатчик создает сложный ток, состоящий из нескольких токов, у которых наиболее высокая частота на 9 кгц больше наиболее низкой частоты. Например, для радиовещательного передатчика, работающего на частоте 173 кгц (ламбда =1734 м), это будут частоты от 168,5 до 177,5 кгц. В случае служебной радиотелефонной связи полоса частот не больше 2 - 2,5 кгц, а для радиотелеграфной передачи она еще меньше. Зато при телевизионной передаче полоса частот расширяется до нескольких мегагерц.

При воздействии на контур электродвижущих сил различной частоты наиболее сильные колебания получаются в случае, когда эде имеет резонансную частоту или частоту, близкую к ней. А при значительном отклонении частоты внешней эде от резонансного значения, т. е. когда контур расстроен относительно частоты внешней эде, амплитуда колебаний получается сравнительно малой.

Можно сказать, что каждый контур хорошо пропускает колебания в пределах некоторой полосы частот, располагающейся по обе стороны от резонансной частоты. Ее называют полосой пропускания контура Ппр и условно определяют по резонансной кривой на уровне 0,7 от максимального значения тока или напряжения, соответствующего резонансной частоте (рис.1).

 

Рис.1 - Полоса пропускания контура

 

Иначе говоря, считают, что контур хорошо пропускает колебания тогда, когда их амплитуда уменьшается не более, чем на 30% по сравнению с амплитудой при резонансе. Полосу пропускания контура иногда называют также шириной кривой резонанса. Качество контура влияет на форму резонансной кривой. Из этого рисунка видно, что чем ниже качество контура, тем больше его полоса пропускания. Кроме того, полоса пропускания получается больше при более высокой резонансной частоте контура.

Зависимость полосы пропускания контура от его затухания или добротности Q дается следующей простой формулой

 

 

Например, контур, настроенный на частоту fо = 2000 кгц и обладающий затуханием (сигма) = 0,01, имеет полосу пропускания Ппр =0,01 * 2000 = 20 кгц.

Как видно, для получения узкой полосы пропускания необходимо применять контур с высокой добротностью, а для широкой полокую добротность, либо работать на весьма высокой резонансной частоте.

Из приведенной формулы следует, что fo = Q * Ппp. Так как у контура среднего качества Q не менее 20, то рабочая частота должна не менее, чем в 20 раз, превышать полосу пропускания. Например, телевизионную передачу, для которой Ппр составляет несколько мегагерц, нужно вести на частотах не ниже нескольких десятков мегагерц, т.е. на ультракоротких волнах.

Желательно, чтобы контур имел полосу пропускания соответствующую полосе частот, которая характерна для данного вида передачи. Если полоса пропускания меньше, то получатся искажения за счет плохого пропускания некоторых колебаний. Более широкая полоса нежелательна, так как могут быть помехи от сигналов радиостанций, работающих на соседних частотах.

Если необходима широкая полоса пропускания, то приходится часто применять контуры с низкой добротностью. Добротность контура снижается, а полоса пропускания увеличивается, если параллельно контуру присоединяют активное сопротивление R, называемое шунтирующим (рис.2). Действительно, переменное напряжение U, имеющееся на контуре, приложено к сопротивлению R и создает в нем ток. Следовательно, в этом сопротивлении будет расходоваться мощность. Чем меньше сопротивление R, тем больше в нем потери мощности и тем больше затухание контура. Если сопротивление R будет очень малым, то оно замкнет накоротко один из элементов контура (конденсатор на (рис.2 а) или весь контур (рис.2 б). Тогда контур вообще не сможет работать как колебательная система и проявлять свои резонансные свойства.

 

 

Рис.1 - Шунтирование контура активным сопротивлением

 


Шунтирование контура активным сопротивлением делают иногда специально с целью расширения полосы пропускания. Кроме того, подобное шунтирование существует вследствие того, что контур соединен с другими деталями и цепями. За счет этого происходит нежелательное ухудшение качества контура.

Внутреннее сопротивление генератора, питающего параллельный контур, также влияет на добротность контура и его поласу пропускания. Это можно легко объяснить следующим образом.

Пусть генератор в какой-то момент прекратил свое действие. Тогда колебания в контуре станут затухать, а внутреннее сопротивление генератора, присоединенного к контуру, будет играть роль шунтирующего сопротивления, увеличивающего затухание.

Чем больше Ri генератора, тем слабее его влияние, а значит, кривая резонанса контура острее и его полоса пропускания меньше, т.е. резонансные свойства контура выражены резче. При малом Ri генератора добротность контура настолько снижается и полоса пропускания становится такой широкой, что резонансные свойства у контура практически отсутствуют.

К подобному выводу о влиянии Ri генератора мы пришли уже ранее при рассмотрении работы параллельного контура.

Избирательность параллельного контура при различных внутренних сопротивлениях генератора – ДОДЕЛАТЬ111

57. Параллельный колебательный контур – Вопрос № 51






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных