Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Решение игр вида 2хn и mх2




Методы решения конечных игр

Решение игр вида 2хn и mх2

Графо-аналитический метод.

У таких игр всегда имеется решение, содержащее не более двух активных стратегий для каждого из игроков. Если найти эти активные стратегии, то игра 2 х n или m х 2 сводится к игре 2 х 2, которую мы уже умеем решать. Поэтому игры 2 х n и m х 2 решают обычно графоаналитическим методом.
Рассмотрим решение матричной игры на примере.
Пример.


Решение.

       
  1 4 7 1
  6 3 2 2
6 4 7 2 4


a = 2, b=4, , поэтому игра не имеет седловой точки, и решение должно быть в смешанных стратегиях.
1. Строим графическое изображение игры.

Если игрок B применяет стратегию В1, то выигрыш игрока A при применении стратегии А1 равен а11 = 1, а при использовании А2 выигрыш равен а21 = 6, поэтому откладываем отрезки А1В1 = 1, А2В1 = 6 на перпендикулярах в А1 и А2 и соединяем их отрезком. Аналогично для стратегий В2 и В3 строим отрезки В2 В2 и В3 В3.
2. Выделяем нижнюю границу выигрыша В1М N В3 и находим наибольшую ординату этой нижней границы, ординату точки М, которая равна цене игрыγ.
3. Определяем пару стратегий, пересекающихся в точке оптимума М.
В этой точке пересекаются отрезки В2В2 и В1В1, соответствующие стратегиям В1 и В2 игрока B. Следовательно, стратегию В3 ему применять невыгодно. Исключаем из матрицы третий столбец и решаем игру 2 x 2 аналитически:


; ; .
Ответ: γ = 7/2; PA = (1/2; 1/2); QB = (1/6; 5/6; 0). Правила решения игры 2xn


♦ строится графическое изображение игры;
♦ выделяется нижняя граница выигрыша и находится наибольшая ордината нижней границы, которая равна цене игры γ;
♦ определяется пара стратегий, пересекающихся в точке оптимума M. Эти стратегии являются активными стратегиями игрока B. Если в точке оптимума пересекаются более двух стратегий, то в качестве активных стратегий может быть выбрана любая пара из них;
♦ решается полученная игра 2x2.
Решение игры m x2 осуществляется аналогично. Вместо пункта 2 применяется;
♦ выделяется верхняя граница выигрыша, и на ней находится точка оптимума с наибольшей ординатой.
Пример.


Решение.

     
  0,4 1,0 0,4
  0,5 0,5 0,5
  1,0 0,3 0,3
  0,8 0,3 0,3
1,0 1,0 0,5 1,0


a= 0,5, b= 1,0. Седловой точки нет.
1. строим графическое изображение игры относительно игрока В.
Если А применяет А1, то при использовании игроком В стратегии В1 выигрыш игрока А равен 0,4, а выигрыш А при стратегии В2 равен 1,0, поэтому на перпендикулярах строим такие отрезки. Видно, что стратегия А4 заведомо невыгодная по сравнению со стратегией А3 (выигрыш меньше).
2. Выделяем верхнюю границу выигрыша А31; точка с наименьшей ординатой – N.
3. В этой точке пересекаются отрезки А1А1 и А3А3, соответствующие активным стратегиям А1 и А3. Стратегия А2 не является активной, поэтому из матрицы исключаем вторую и четвертую строки: .


4. решаем игру:


13p3 = 6; p3 =6/13; p1 = 7/13

q2 = 6/13.
Ответ: γ = 44/65; PA = (7/13; 0; 6/13; 0); QB = (7/13; 6/13).

Примечание: Игроку А не выгодно отклоняться от спектра своих активных стратегий.

Игры с "природой"

Термин "природа" в теории игр понимается в широком смысле. Это могут быть действительные природные физические (климатические), биологические, химические, социальные и т.п. процессы, которые сопровождают экономическую деятельность. Под "природой" может также пониматься рынок, противостоящий предпринимателю, конкурирующая среда, монополия и т.п. "Природа" может выступать как антагонистическая сторона, а может как кооперативная среда. "Природа" в виде природных процессов, как часть экономики, не стремиться "специально" навредить предпринимателю, но она несёт определённый урон от его экономической деятельности и этот "проигрыш"для неё должен быть минимален, если, вообще, без него для окружающей среды нельзя обойтись. Игрок A в таких играх - это экономические субъекты, а игрок B - это "природа". Откуда средства у физической "природы"? Проигрыш игрока B, физической "природы", должен компенсироваться из вне, например, государственными дотациями либо заложенными в инвестиционные проекты средствами на возобновление природных ресурсов. Знание оптимальных стратегий "природы" позволяет определить наиболее неблагоприятные условия для игрока A (предпринимателя), которые его ожидают ("надейся на лучшее, но готовься к худшему"), и оценить необходимые ресурсы на восстановление природных ресурсов, дающих ему возможность получить гарантированный доход.

Если "природа" подразумевает конкурентную среду - то проигрыш второго игрока есть цена борьбы с конкурентами на рынке.

Перейдём к примерам содержательных постановок задач игры с "природой".






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных