Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Электронные и микропроцессорные системы зажигания




Реализация многоканального распределения энергии может быть осуществлена в системах зажигания несколькими способами. Наиболее простой из них - применение двухвыводного высоковольтного выходного трансформатора или двухвыводной катушки зажигания в выходном каскаде. Такой способ разделения каналов приемлем для реализации в системе зажигания с любым типом накопителя.

Известно, что в системе зажигания, на выходе которой установлен высоковольтный распределитель, во время разряда накопителя имеют место две искры: одна основная (рабочая) в свече зажигания и другая вспомогательная - между бегунком распределителя и контактом одного из его свечных выводов. Энергия вспомогательной искры в распределителе тратится бесполезно, и эту искру стремятся всячески подавить. Отсюда ясно, что вспомогательную искру из-под крышки распределителя можно перенести во вторую свечу зажигания, соединив ее с первой через «массу» головки блока цилиндров последовательно. Для этого достаточно исключить распределитель из выходного каскада, отсоединить от «массы» автомобиля заземляемый вывод катушки зажигания и подключить к нему вторую электроискровую свечу (рисунок 3.5).

При одновременном искрообразовании в двух свечах зажигания одна искра является высоковольтной (12...20 кВ) и воспламеняет топливовоздушную смесь в конце такта сжатия (рабочая искра). При этом другая искра низковольтная (5...7 кВ), холостая.

В конце такта сжатия незадолго до появления рабочей искры температура топливовоздушного заряда еще недостаточно высокая (200...300°С), а давление, наоборот - значительное (1...1,2 МПа). В таких условиях пробивное напряжение между электродами свечи - максимально. В конце такта выпуска, когда имеет место искрообразование в среде отработавших газов, пробивное напряжение минимально, так как температура выхлопных газов высокая (800...1000°С), а давление низкое (0,2...0,3 МПа).

Таким образом, при статическом распределении высокого напряжения с помощью двухвыводной катушки зажигания (на двух последовательно соединенных свечах - одновременно) почти вся энергия высоковольтного электроискрового разряда приходится на рабочую искру.

Если в ДВС четыре цилиндра, потребуются две двухвыводные катушки зажигания и два раздельных энергетических канала коммутации в выходном каскаде. (рисунк 3.6)

А - выходной каскад двухканалъного коммутатора; VT1, VT2 - транзисторы коммутатора; TV1, ТУ2 - катушки зажигания; FV1-FV4 - искровые свечи
Рисунок 3.5 - Соединение свечей зажигания с двухвыводной катушкой Рисунок 3.6 - Схема низковольтного распределения импульсов высокого напряжения с двумя двухвыводными катушками [20]

Чтобы чередование воспламенений топливовоздушной смеси в цилиндрах соответствовало порядку работы двигателя (1243 или 1342), первая свеча сгруппирована с четвертой, а вторая - с третьей. При таком соединении свечей «рабочие» искры возникают в цилиндрах в конце такта сжатия, а «холостые» искры - в конце такта выпуска.

В настоящее время разработан ряд автомобильных систем зажигания, в которых две двухвыводные катушки зажигания собираются на общем Ш образном магнитопроводе и тем самым образуется одна 4-выводная катушка зажигания. Такая катушка имеет две первичные и две вторичные обмотки и управляется от двухканального коммутатора. Четырехвыводная катушка зажигания может иметь и одну вторичную двухвыводную обмотку при двух первичных. Вторичная обмотка такой катушки дооборудована четырьмя высоковольтными диодами - по два на каждый высоковольтный вывод.

Недостатком любой системы зажигания с двухвыводными катушками является то, что в одной свече искра развивается от центрального электрода к массовому (боковому), а во второй свече - в обратном направлении (рисунок 3.5). Так как центральный электрод заострен и всегда значительно горячее бокового, то истечение носителей заряда с его острия при искрообразовании требует затраты меньшего количества энергии, чем при истечении с бокового электрода (на центральном электроде начинает проявляться термоэлектронная эмиссия). Это приводит к тому, что пробивное напряжение на свече, работающей в прямом направлении, становится несколько ниже (на 1,5...2 кВ), чем на свече с обратным включением полярности. Для современных электронных и микропроцессорных систем зажигания с большим коэффициентом запаса по вторичному напряжению и с управляемым временем накопления энергии это не имеет принципиального значения.

 

Катушки зажигания микропроцессорных систем зажигания

 

В современных микропроцессорных системах зажигания с накоплением энергии в индуктивности распределение высоковольтных импульсов по свечам в цилиндрах двигателя осуществляется без высоковольтного распределителя и чаще всего с применением двухвыводных катушек зажигания. Такой способ иногда называют статическим распределением. Система зажигания с двухвыводными катушками пригодна для работы на четырехтактном двигателе с любым четным числом цилиндров (2, 4, 6, 8...).

Первые двухвыводные катушки зажигания были изготовлены на базе традиционных одновыводных катушек с разомкнутым магнитопроводом в маслонаполненном металлическом корпусе. Они имели увеличенные габариты и массу и значительно отличались от прототипа по конструкции. Такие катушки не нашли широкого применения. Разработка новых полимерных материалов, обладающих высокими диэлектрическими свойствами, позволила создавать так называемые «сухие» двухвыводные катушки зажигания.

Двухвыводная катушка зажигания (рисунок 3.7) имеет разомкнутый магнитопровод и двухсекционную вторичную обмотку. Вторичная обмотка расположена сверху первичной, что обеспечивает надежную изоляцию выводов высокого напряжения. Охлаждение первичной обмотки - через центральный стержень магнитопровода, который выступает наружу и имеет крепежное отверстие.

Обмотки катушки пропитаны компаундом и опрессованы полипропиленом, из пропилена выполнены также корпус, гнезда высоковольтных и низковольтных выводов.

В настоящее время все большее распространение получают трансформаторы зажигания, т.е. двухвыводные катушки зажигания с замкнутым магнитопроводом 1 (рисунок 3.8).

 

а - внешний вид; б - катушка в разрезе; 1 - магнитопровод с крепежным отверстием А; 2- первичная обмотка; 3 - корпус; 4 - вторичная обмотка; 5- высоковольтные выводы; 6 - заливка полипропиленом; 7 - низковольтные выводы а - внешний вид; б - катушка в разрезе; 1 - замкнутый магнитопровод с воздушным зазором; 2 - первичная обмотка; 3 -корпус; 4 - вторичная обмотка; 5- высоковольтные выводы; 6 - низковольтные выводы;? - воздушный зазор; 8 - заливка полипропиленом; 9 - пластмассовый каркас
Рисунок 3.7 - Конструкция катушки зажигания с разомкнутым магнито-проводом Рисунок 3.8 - Конструкция катушки зажигания с замкнутым магнитопро-водом

 

Наличие замкнутого магнитопровода позволяет уменьшить габариты и вес катушки, повысить кпд преобразования энергии, уменьшить расход обмоточного провода и электротехнической стали, улучшить параметры искрового разряда, снизить трудоемкость изготовления.

В некоторых модификациях микропроцессорных систем зажигания применяются четырехвыводные катушки зажигания, состоящие из двухвыводных катушек, собранных на общем Ш-образном магнитопроводе.

Более распространенной является схема четырехвыводной катушки с высоковольтными диодами (рисунок 3.9), которая содержит две встречно намотанные первичные обмотки и одну вторичную. Полярность вторичного напряжения определяется направлением укладки витков в первичных обмотках.

Если в точке S (см. рисунок 3.9) напряжение имеет положительную полярность, то открываются высоковольтные диоды VD1, VD4 и в соответствующих цилиндрах двигателя появляются искровые разряды (рабочая и холостая искры).

Вторая первичная обмотка намотана в обратном направлении, и при прерывании в ней тока полярность вторичного напряжения в точке S изменится на отрицательную [20]. При этом искровые разряды возникнут в двух цилиндрах двигателя со свечами FV2 и FV3. Для исключения взаимного влияния первичных обмоток в период образования импульсов высокого напряжения к их выводам низкого напряжения подключены разделительные диоды VD5, VD6.

К общим недостаткам систем зажигания с двух- и четырехвыводными катушками относится разнополярность высоковольтных импульсов относительно «массы» автомобиля на спаренных свечах зажигания. За счет этого пробивное напряжение в свечах может отличаться на 1,5...2 кВ.

Для микропроцессорных систем зажигания с накоплением энергии в индуктивности выпускаются индивидуальные одновыводные катушки зажигания с замкнутым магнитопроводом - так называемые трансформаторы зажигания (см. рисунок 3.10).

 

А - выходной каскад; VD1-VD4 - высоковольтные диоды; TV - трансформатор зажигания     1-свеча зажигания; 2 - высоковольтный провод; 3 - многосекционная вторичная обмотка; 4 - первичная обмотка; 5 - сердечник; б - низковольтный вывод; 7 - заливка полипропиленом; 8-пластмассовый каркас
Рисунок 3.9 - Схема включения четырехвыводной катушки с высоковольтными диодами Рисунок 3.10 - Конструкции одновыводной катушки зажигания фирмы BOSH с индуктивным накопителем[20]  

 

В системах зажигания с накоплением энергии в емкости катушка зажигания выполняет функцию только повышающего импульсного трансформатора, ее габариты при этом могут быть значительно уменьшены. Это позволяет изготовлять индивидуальные катушки зажигания для каждой свечи в отдельности и монтировать их непосредственно на свечах. Для такой системы не нужны высоковольтные провода, которые являются источником радиопомех. Кроме того, исключается холостая искра. Вторичное напряжение несколько увеличивается и имеет только отрицательную полярность, что продлевает срок службы свечи зажигания

Высокий уровень вторичного напряжения и параметров искрового разряда способствует выполнению жестких требований, предъявляемых к современному автомобильному двигателю по экономичности и токсичности. Повышение скорости нарастания вторичного напряжения делает систему зажигания менее чувствительной к нагарообразованию на тепловом конусе искровой свечи. Однако при этом на 20...30% возрастает пробивное напряжение на свечах, что объясняется соизмеримостью времени формирования искрового разряда в свече со временем нарастания на ней вторичного напряжения. При большом запасе по вторичному напряжению это не принципиально






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных