Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Метод ступенчатой аппроксимации




Так как законы распределения вероятности событий могут быть различной формы, а не только равновероятными, то необходимо уметь превращать равномерный ГСЧ в генератор случайных чисел с заданным произвольным законом распределения. На рис. 21.3 это соответствует двум первым блокам метода статистического моделирования. Для этого непрерывный закон распределения вероятности события дискретизируем, превратим в дискретный.

Обозначим: hi — высота i-го столбца, f(x) — распределение вероятности (показывает насколько вероятно некоторое событие x). Значение hi операцией нормировки необходимо перевести в единицы вероятности появления значений x из интервала xi < xxi + 1: Pi = hi/(h1 + h2 + … + hi + … + hn).

Операция нормировки обеспечивает сумму вероятностей всех n событий равную 1:

На рис. 24.2 показаны графически переход от произвольного непрерывного закона распределения к дискретному (рис. 24.2, а), отображение получаемых вероятностей на интервал rрр[0; 1] и генерация случайных событий с использованием эталонного равномерно распределенного ГСЧ (рис. 24.2, б).

Рис. 24.2. Иллюстрация метода ступенчатой аппроксимации

Заметим, что внутри интервала xi < xxi + 1 значение x теперь не различимо, одинаково. Метод огрубляет изначальную постановку задачи, переходя от непрерывного закона распределения к дискретному. Поэтому следует учитывать количество разбиений n из условий точности представления.

На рис. 24.3 показан фрагмент алгоритма, реализующего описанный метод. Алгоритм генерирует случайное число, равномерно распределенное от 0 до 1. Затем, сравнивая границы отрезков, расположенных на интервале от 0 до 1, представляющих собой вероятности P выпадения тех или иных случайных величин X, определяет в цикле, какое из случайных событий i в результате этого выпадает.

Рис. 24.3. Блок-схема алгоритма, реализующего метод ступенчатой аппроксимации

Заметим, что внутри интервала xi < xxi + 1 значение x теперь не различимо, одинаково. Метод огрубляет изначальную постановку задачи, переходя от непрерывного закона распределения к дискретному. Поэтому следует учитывать количество разбиений n из условий точности представления.

Метод усечения

Метод используется в случае, когда функция задана аналитически (в виде формулы). График функции вписывают в прямоугольник (см. рис. 24.4). На ось Y подают случайное равномерно распределенное число из ГСЧ. На ось X подают случайное равномерно распределенное число из ГСЧ. Если точка в пересечении этих двух координат лежит ниже кривой плотности вероятности, то событие X произошло, иначе нет.

Недостатком метода является то, что те точки, которые оказались выше кривой распределения плотности вероятности, отбрасываются как ненужные, и время, затраченное на их вычисление, оказывается напрасным. Метод применим только для аналитических функций плотности вероятности.

Рис. 24.4. Иллюстрация метода усечения

На рис. 24.5 показан алгоритм, реализующий метод усечения. В цикле генерируется два случайных числа из диапазона от 0 до 1. Числа масштабируются в шкалу X и Y и проверяется попадание точки со сгенерированными координатами под график заданной функции Y = f(X). Если точка находится под графиком функции, то событие X произошло с вероятностью Y, иначе точка отбрасывается.




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных