Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Лабораторная работа. Определение с помощью простейшего калориметра теплоты реакции нейтрализации сильного основания сильной кислотой и теплоты растворения солей.




Цель работы:

Определение с помощью простейшего калориметра теплоты реакции нейтрализации сильного основания сильной кислотой и теплоты растворения солей.

Описание исследуемых процессов

Согласно теории электролитической диссоциации, реакция между растворами сильной кислоты и сильного основания, например,

HCl(p) + NaOH(р) ® NaCl(р) +H2O ,

независимо от того, какие кислоты или основания были взяты, может быть представлена в виде

Н++ ОН- ®Н2О + 56.9 кДж.

Таким образом, в основе этих реакций лежит одно и то же термохимическое уравнение.

Растворение кристаллических солей представляет сложное физико-химическое явление. При растворении кристаллической соли протекают два основных процесса : первый - эндотермический, связанный с разрушением кристаллической решетки; второй - экзотермический, обусловленный взаимодействием растворенного вещества с молекулами растворителя с образованием гидратированных ионов. В зависимости от того, какой из двух тепловых процессов преобладает, тепловой эффект растворения может быть положительной или отрицательной величиной.

Расчет теплоты из экспериментальных данных

Расчет теплоты, поглощающейся или выделяющейся в калориметре, в данной работе проводим исходя из следующих допущений:

1) считаем, что тепловой эффект проявляется только в изменении температуры раствора и стекла конической колбы - реактора;

2) пренебрегаем относительно небольшими потерями тепла в окружающую среду;

3) принимаем теплоемкость раствора равной теплоемкости воды.

С учетом сделанных допущений выделяющуюся или поглощаемую в калориметре теплоту вычисляем по формуле

q = (cР ×mР + cС × mС) × DT,

где сР = 4.184 кДж/(кг×К); сС=0.75 кДж/(кг×К) - удельные теплоемкости раствора и стекла; mР и mС - массы раствора и стеклянной колбы-реактора; DТ - изменение температуры калориметра в ходе процесса.

Таким образом, задача калориметрического эксперимента сводится к точному определению изменения температуры калориметра DT, обусловленному тепловым эффектом.

Оборудование и реактивы

Калориметр, термометр с точностью не хуже 0.1о С. весы с точностью измерения 0.01 г. Мерный цилиндр на 100 мл. Ареометр.

Реактивы: 1М НС1; 1М НNO3 ; 3М NaOH; CuSO4 (безводный); CaSO4×5H2O (кристаллогидрат).

Опыт 1. Определение теплового эффекта реакции нейтрализации сильного основания сильной кислотой.

В сухую коническую колбу с известной массой с помощью мерного цилиндра залейте 150 мл 1М раствора соляной кислоты и поместите ее в стакан, внутри которого размещены теплоизолирующие прокладки из пенопласта. Закройте калориметр крышкой с отверстием для термометра.

Налейте в мерный цилиндр 50 мл 3М раствора NaOH и измерьте его температуру. Необходимо, чтобы температуры исходных растворов были одинаковы.

Каждый калориметрический опыт начинают с определения температурного хода калориметрической системы. Для этого в течение нескольких минут измеряют температуру калориметра. Показание термометра фиксируют через каждую минуту. Если в течение 5 минут изменения температуры невелики и равномерны (эти изменения составляют начальный период опыта), то в определенный момент отсчета вылейте в калориметр через воронку приготовленный раствор щелочи. Перемешайте растворы. С момента сливания растворов начинается главный период опыта. За счет теплового эффекта протекающей химической реакции происходит резкое изменение температуры. По окончании реакции нейтрализации температурный ход в калориметре станет снова равномерным. Момент наступления равномерного хода в калориметре является концом главного и началом конечного периода.

В конечном периоде в течение 5 минут температурные отсчеты проводятся через минуту, как и в начальном периоде.

Результаты температурных измерений изображаются в виде графика на миллиметровой бумаге. На рисунке проводится график изменения температуры в реакции нейтрализации. Здесь линии АВ, ВС и СD соответствует начальному, главному и конечному периодам реакции. Наличие температурного хода линии СD свидетельствует об имеющем место теплообмене калориметра с окружающей средой. В расчетах максимальной температуры раствора теплообмен учитывается следующим образом. Прямая АВ экстраполируется вправо, а прямая СD - влево. Интервал времени ВС делится пополам и из точки М1 проводится перпендикуляр к оси абсцисс. Отрезок HCT соответствует изменению температуры калориметра DТ, вызванному протеканием химического процесса с поправкой на теплообмен.

Для расчетов потребуется также значение массы раствора, находящегося в калориметре, которую можно определить либо путем взвешивания, либо из выражения mР = V×r, где V = 200 мл, а значение r можно измерить с помощью ареометра или принять равным 1 г/мл.

По указанию преподавателя процедуру определения DТ можно упростить.

1.Измерьте температуру раствора кислоты в колбе - ТК .

2.Измерте температуру раствора щелочи в цилиндре - ТЩ.

3.Начальную температуру раствора после смешения рассчитайте по формуле

Т1 = (ТК ×150 + ТЩ × 50) / 200.

4.Залейте раствор щелочи в колбу-калориметр. Сразу же после смешения закройте колбу крышкой с термометром. Энергично взбалтывая полученный раствор следите за его температурой. Отметьте максимальную температуру Т2.

5.Рассчитайте DТ = Т2 - Т1.

Результаты выполненных измерений запишите в таблицу.

№ опыта Масса колбы-калоримет-ра, mС, г Масса раствора в колбе, mР, г   Начальная температура раствора Изменение температуры калориметра DТ Использованная кислота
      кис-лота NaOH    
             

 

Тот же эксперимент проделайте с 1М раствором HNO3.

На основании полученных данных определить

1) количество теплоты [кДж], выделившееся при протекании реакции нейтрализации;

2) число молей образовавшейся в ходе реакции воды (рассчитать из значений концентрации щелочи или кислоты и уравнения химической реакции);

3) рассчитать тепловой эффект реакции нейтрализации (кДж/моль Н2О) и составить термохимическое уравнение изучаемой реакции;

4) сравнить значения тепловых эффектов нейтрализации 1М раствора НС1 и 1М раствора HNO3; cделать вывод.

Опыт 2. Определение тепловых эффектов растворения солей

Опыт проводится в той же калориметрической установке и по той же методике, которая описана в опыте 1.В колбу налейте 200 мл дистиллированной воды и снимите начальный температурный ход калориметра. Взвесьте ~ 5 г безводной соли с точностью до 0.01 г. Быстро внесите навеску в колбу. При постоянном взбалтывании раствора следите за показаниями термометра. Температурные измерения представьте графически и рассчитайте значения DТ.

Результаты опыта запишите в таблицу.

 

№ опыта Масса колбы m1, г Масса соли Масса воды Масса раствора Изменения температуры Т1
             

 

Опыт повторите с кристаллогидратом соли, взяв навеску ~ 8 г. Результаты опыта запишите в таблицу.

По данным проведенного эксперимента

1) рассчитать теплоту растворения безводной соли, кДж/моль;

2) рассчитать теплоту растворения кристаллогидрата, кДж/моль;

3) используя закон Гесса по найденным теплотам растворения безводной соли и ее кристаллогидрата рассчитать теплоту гидратации безводной соли и составить термохимические уравнения этой реакции

CuSO4(кр.) + 5H2O(ж.) = CuSO4× 5H2O(кр.) + Q1 .(1)

При этом следует иметь в виду, что процесс растворения безводного сульфата меди может быть представлен в виде двух последовательно протекающих процессов : процесса (1) и

CuSO4 × 5H2O(кр.) = CuSO4(p) + 5H2O + Q2(2) или в виде одного суммарного уравнения

CuSO4(кр.) = CuSO4(p) + Q3 ,

где Q2 и Q3 - теплоты растворения кристаллогидрата и безводной соли. Учитывая, что начальное и конечное состояния в обоих случаях одинаковы, на основании закона Гесса, Q3 = Q1 + Q2, откуда Q1 = Q3 - Q2.

 

Контрольные вопросы

1.Рассчитайте стандартную теплоту образования диоксида азота NO2(г), если стандартный тепловой эффект реакции 2 NO2(г) « N2O4 (г) при 298К равен - 58,4 кДж/моль, а стандартная теплота образования N2O4(г) равна 9,4 кДж/моль.

2. Установите возможность (или невозможность) самопроизвольного протекания реакции СО(г) + 1/2 О2=СО2(г) при 298 К и 1 атм. Ответ подтвердите расчетом.

3. Теплоты образования воды и водяного пара равны соответственно 285,8 и 241,8 кДж/моль. Рассчитайте теплоту испарения воды при 25оС.

Жесткость воды

Введение

Абсолютно чистой воды в природе не бывает. При взаимодействии воды с атмосферой и почвой в ней растворяются органические и неорганические соединения. Особое значение имеют присутствующие в воде многозарядные катионы Ca2+ и Mg2+. Если концентрация этих ионов велика, то воду называют жесткой, если мала - мягкой. Жесткость воды подразделяют на карбонатную и некарбонатную.

Карбонатной называют жесткость, обусловленную присутствием в воде гидрокарбонатов кальция и магния Ca(HCO3)2 и Mg(HCO3)2. При повышении температуры, особенно при кипячении, эти соли разлагаются с образованием малорастворимых карбоната кальция и гидроксида магния и жесткость устраняется :

to

Ca(HCO3)2 ® CaCO3¯+H2O+CO2­,

to

Mg(HCO3) ® Mg(OH)2¯ +2CO2­.

Поэтому карбонатную жесткость еще называют временной.

Некарбонатная жесткость определяется содержанием в воде сульфатов и хлоридов кальция и магния. При кипячении эти соли не удаляются из воды. Поэтому некарбонатную жесткость еще называют постоянной. Сумма постоянной и временной жесткости дает общую жесткость воды.

Жесткость характеризуют числом моль эквивалентов солей Са2+ и Mg2+ в 1л воды. Жкарб. - карбонатная жесткость воды, определяется количеством ммоль эквивалентов анионов НСО3- в 1л воды: Жкарб.= СN(НСО3)×103, мэкв/л. Жобщ. - общая жесткость воды, определяется количеством ммоль эквивалентов катионов Ca2+, Mg2+ в 1л воды: Жобщ.= [СN(Са2+)+СN(Mg2+) ]× 103, мэкв/л.

Жнекарб.общ. - Жкарб.

Жесткая вода непригодна в качестве теплоносителя на энергообъектах, ее вкусовые качества невелики, стирка в жесткой воде возможна только при повышенном расходе моющих средств. Поэтому воду умягчают, т.е. снижают содержание ионов Ca2+ и Mg2+.

Один из простейших способов устранения жесткости - кипячение (см. выше уравнения протекающих при этом реакций). В этом случае из воды удаляются лишь гидрокарбонаты. Химические способы устранения жесткости – известкование (добавление в воду гашеной извести Ca(OH)2) и содирование (добавление кальцинированной соды Na2CO3). Современными методами умягчения воды являются дистилляция (испарение воды с образованием концентрированных растворов солей), обратный осмос (молекулярное фильтрование) и ионный обмен (сорбция ионов Са2+ и Mg2+ полимерными смолами, сопровождающаяся поступлением в воду эквивалентных количеств других катионов, например, H+)

Определение карбонатной жесткости основано на реакции

HCO3- + H+ ® H2O + CO22СО3).

Образующийся углекислый газ остается в растворе в виде Н2СО3, т.к. его количество невелико. Раствору СО2 в воде соответствует рН » 4, поэтому точку эквивалентности определяют по изменению окраски метилового оранжевого, которая при рН = 4 переходит из желтой в оранжевую.

Общую жесткость воды можно определить с помощью раствора двухзамещенной натриевой соли этилендиаминтетерауксусной кислоты (комплексон III, Na2ЭДТА или трилон – В):

HO OH

:O=C-CH2 CH2-C=O:

N-CH2-CH2-N

:O=C-CH2 CH2-C=O:

NaO Ona

(Na2H2ЭДТА)

Это вещество за счет электронных пар, обозначенных точками, образует донорно–акцепторные связи с комплексообразователями, в качестве которых выступают ионы Са2+ и Mg2+. При образовании комплекса происходит замена двух ионов водорода соли на 1 ион металла:

Са2+ + Н2ЭДТА2- ®[Са(ЭДТА)]2- + 2Н+

Mg2++ Н2ЭДТА2- ®[ Mg(ЭДТА)]2- + 2Н+

Образующиеся комплексы очень устойчивы (КН » 1×10-11 для первого, КН » 1×10-9 для второго), т.к. число донорно–акцепторных связей 1 иона металла с 1 молекулой–лигандом (дентантность) равно 6. При титровании трилон–В реагирует с ионами металлов до тех пор, пока все ионы Са2+ и Mg2+ не окажутся связанными.

Индикатором точки эквивалентности служат соединения, дающие с ионами Са2+ или Mg2+ окрашенные комплексы, менее прочные, чем комплексы с Na2H2ЭДТА. Таким индикатором является эриохром черный (ЭТ - 00). Это органический краситель, дающий с Mg2+ комплексную соль красно-фиолетового цвета.

Таким образом, если к жесткой воде прибавить несколько капель спиртового раствора ЭТ-00, то вода окрасистся в красно-фиолетовый цвет вседствие присутствия в ней ионов магния. Если же затем понемногу прибавлять раствор комплексона III с известной концентрацией, в первую очередь будет образовываться наиболее прочный комплекс с ионами кальция, а затем менее прочный комплекс с ионами магния. При этом комплекс ионов магния с индикатором, как наименее прочный, распадется и цвет воды перейдет из красно-фиолетового в синий (точка эквивалентности)

Следует иметь в виду, что эриохром черный имеет синий цвет только при pH=7-11, а в кислой среде он принимает вишнево-красный цвет. Поэтому титрование ведут в присутствии буферного раствора NH4ОН - NH4Cl, для которого pH = 9 - 10. Буфер нейтрализует кислоту, выделяющуюся при титровании.

 




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных