ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Затухающие колебания
Учет сил трения и сопротивления в реальных системах существенно изменяет характер движения: энергия движения постоянно убывает и колебания либо становятся затухающими, либо колебательное движение вообще не возникает. Если в рассматриваемой системе появляются силы сопротивления среды (силы трения), то второй закон Ньютона можно записать так:
Предполагают, что при не очень больших амплитудах и частотах сила сопротивления пропорциональна скорости движения и, естественно, направлена противоположно ей: где r — коэффициент трения, характеризующий свойства среды оказывать сопротивление движению. Учитывая (10.13) и (10.14),
или где β─коэффициент затухания; ω0 - круговая частота собственных колебаний системы. Решение полученного дифференциального уравнения зависит от знака разности ω2= ω02— β2, т. е. от соотношения между величинами β и ω0. Параметр есть круговая частота затухающих колебаний. а) Если ω02— β2> 0 и круговая частота со является действительной величиной, то решение уравнения (10.15) имеет вид: где ω = круговая частота затухающих колебаний. График таких колебаний представлен на рис. 10.3. Рис. 10.3. График зависимости смещения от времени при затухающих колебаниях (φ0 -. 0) В этом случае колебательный характер движения сохраняется, но амплитуда колебаний уменьшается со временем по экспоненциальному закону А = Α0·ехр(— β · t). Круговая частота колебаний становится меньше, чем при отсутствии силы трения. Период затухающих колебаний в этом случае возрастает и определяется формулой, показывающей зависимость от коэффициента трения:
Быстрота убывания амплитуды колебаний зависит от коэффициента затухания: чем больше р, тем сильнее тормозящее действие среды и тем быстрее уменьшается амплитуда. Количественно степень затухания характеризуется безразмерной величиной — логарифмическим декрементом затухания λ: б) ω02< β2 (сильное затухание), то колебательное движение не возникает. Период колебаний становится мнимой величиной. В этом случае запас механической энергии тела к моменту его возвращения в положение равновесия полностью или почти полностью расходуется на преодоление сил трения и тело останавливается. Такое движение называется апериодическим.
Не нашли, что искали? Воспользуйтесь поиском:
|