ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Триадная система умножения. Триадная система умножения при вычислении использует структуры малой и трехмерной триад:
Триадная система умножения при вычислении использует структуры малой и трехмерной триад: - малая триада (основание - 3)
- трехмерная триада (основание - 4)
Двухмерное триадное умножение.
Малая триада при данном умножении указывает на структуру, построение формы которой используется при вычислении. При двухмерных триадных вычислениях, в качестве первого множителя, используется знак двухмерной триады - Zили z. Второй множитель указывает на количество рядов в триаде. Результатом же является количество точек в получившейся триаде.
Z * 2 \ Z2 = 3
Z * 3 \ Z3 = 6
Z * 6 \ Z6 = 21 Z * 7 \ Z7 = 28 Z * 8 \ Z8 = 32 Z * 9 \ Z9 = 41 Z * 10 \ Z10 = 51 Z * 11 \ Z11 = 66 Z * 12 \ Z12 = 78 Z * 13 \ Z13 = 91 Z * 14 \ Z14 = 105 Z * 15 \ Z15 = 120 Z * 16 \ Z16 = 136
Трехмерное триадное умножение.
При трехмерных триадных вычислениях, в качестве первого множителя, используется знак объемной триады - eили знак z, если задано трехмерное умножение знаком ЖДЫ (&). Второй множитель указывает на количество рядов в триаде. Результатом является количество точек в получившейся триаде.
z & 2 \ e2 = 4
В трехмерных триадных умножениях существует формула, по которой можно вычислить значение любого умножения, зная результат предыдущего вычисления: en ≡ en-1 + Zn
Дело в том, что трехмерная триада состоит из соединенных между собой плоскостями малыми триадами, у которых длины сторон увеличиваются на единицу по порядку возрастания номеров рядов в трехмерной триаде (если рядом номер один считать самый верхний ряд). Например структура трехмерной триады сформированная умножением триадно жды три (e3 ) состоит из следующих малых триад: Ряд №1 = 1
Ряд №2 - Z2 = 3
Ряд №3 - Z3 = 6
Триадно жды четыре получается путем «добавления снизу» еще одной малой триады, длина стороны которой будет уже равна четырем, т.е.:
Если при вычислении таблиц трехмерного триадного умножения не брать в расчет таблицы двухмерного умножения, то путем нехитрых вычислений можно получить еще одну формулу:
en ≡ en-1 - en-2 + en-1 + n
Например:
e5 ≡ e5-1 - e5-2 + e5-1 + 5 = e4 - e3 + e4 + 5 = 20 – 10 + 20 + 5 = 35
Не нашли, что искали? Воспользуйтесь поиском:
|