Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Триадная система умножения. Триадная система умножения при вычислении использует структуры малой и трехмерной триад:




 

Триадная система умножения при вычислении использует структуры малой и трехмерной триад:

- малая триада (основание - 3)

 

- трехмерная триада (основание - 4)

 

Двухмерное триадное умножение.

 

Малая триада при данном умножении указывает на структуру, построение формы которой используется при вычислении.

При двухмерных триадных вычислениях, в качестве первого множителя, используется знак двухмерной триады - Zили z. Второй множитель указывает на количество рядов в триаде. Результатом же является количество точек в получившейся триаде.

 
 

 


Z * 2 \ Z2 = 3

       
   
Всего: 3 ряда, 6 точек
 
 

Z * 3 \ Z3 = 6

 


 
 

Всего: 4 ряда, 10 точек
Z * 4 \ Z4 = 10

 


Зная результат предыдущего умножения, следующий результат вычисляется по формуле: Zn = Zn-1 + n   например: Z5 = Z4 + 5 = 10+5 = 15 Z6 = Z5 + 6 = 15+6 = 21 Z7 = Z6 + 7 = 21+7 = 28 и т.д. или можно сказать, что разница между результатами соседних умножений увеличивается на единицу при каждом шаге и равна численному значению второго множителя (количеству рядов в малой триаде), например: Z3 - Z2 = 3 Z4 - Z3 = 4 Z5 - Z4 = 5 Z6 - Z5 = 6 Z7 - Z6 = 7 и т.д.
Z * 5 \ Z5 = 15

Z * 6 \ Z6 = 21

Z * 7 \ Z7 = 28

Z * 8 \ Z8 = 32

Z * 9 \ Z9 = 41

Z * 10 \ Z10 = 51

Z * 11 \ Z11 = 66

Z * 12 \ Z12 = 78

Z * 13 \ Z13 = 91

Z * 14 \ Z14 = 105

Z * 15 \ Z15 = 120

Z * 16 \ Z16 = 136

 

Трехмерное триадное умножение.

 

При трехмерных триадных вычислениях, в качестве первого множителя, используется знак объемной триады - eили знак z, если задано трехмерное умножение знаком ЖДЫ (&). Второй множитель указывает на количество рядов в триаде. Результатом является количество точек в получившейся триаде.

 
 


 


z & 2 \ e2 = 4

 

 
 


3 ряда 10 точек
z & 3 \ e2 = 10

       
 
 
   

 


 

 


4 ряда 20 точек
z & 4 \ e4 = 20

 

 

z & 5 \ e5 = 35 z & 11 \ e11 = 286
z & 6 \ e6 = 56 z & 12 \ e12 = 364
z & 7 \ e7 = 84 z & 13 \ e13 = 455
z & 8 \ e8 = 120 z & 14 \ e14 = 560
z & 9 \ e9 = 165 z & 15 \ e15 = 680
z & 10 \ e10 = 220 z & 16 \ e16 = 816

В трехмерных триадных умножениях существует формула, по которой можно вычислить значение любого умножения, зная результат предыдущего вычисления:

en ≡ en-1 + Zn

 

Дело в том, что трехмерная триада состоит из соединенных между собой плоскостями малыми триадами, у которых длины сторон увеличиваются на единицу по порядку возрастания номеров рядов в трехмерной триаде (если рядом номер один считать самый верхний ряд). Например структура трехмерной триады сформированная умножением триадно жды три (e3 ) состоит из следующих малых триад:

 
 

Ряд №1 = 1

 

 

 
 
e3 ≡ 1 + Z2 + Z3 = 10


Ряд №2 - Z2 = 3

 

Ряд №3 - Z3 = 6

 
 

 

 


Триадно жды четыре получается путем «добавления снизу» еще одной малой триады, длина стороны которой будет уже равна четырем, т.е.:

 

       
 
   
 

 


 

 

               
   
 
   
   
 

 


Если при вычислении таблиц трехмерного триадного умножения не брать в расчет таблицы двухмерного умножения, то путем нехитрых вычислений можно получить еще одну формулу:

 

 
 


en ≡ en-1 - en-2 + en-1 + n

 

Например:

 

e5 ≡ e5-1 - e5-2 + e5-1 + 5 = e4 - e3 + e4 + 5 = 20 – 10 + 20 + 5 = 35

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных