Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Найдем частные производные




.

Составим полный дифференциал

.

 

Задача 10. Найти экстремум функции

Решение.

Найдем частные производные:

и смешанную производную .

Необходимое условие экстремума: и

Решим систему уравнений x = 2y, 4y – y = -9, y = -3

x = -9

Итак, точка P(-9; -3) критическая точка. Составим выражение и вычислим его значение в критической точке P(-9; -3). Тогда, если , то P- точка экстремума. При этом, если , то Р – точка минимума,

а если , то Р – точка максимума,

Если , экстремума нет, а если - экстремум может быть, а может не быть. Нужны дополнительные исследования.

Установим характер экстремума в точке P(-9; -3).

, следовательно, P(-9; -3)- точка экстремума, а так как независимо от координат точки Р, то P(-9; -3) – точка минимума данной функции.

 

Задача 11. Найти неопределенные интегралы а) , б) ,

в) , г) , д) .

Предлагаемые интегралы можно, применив основные методы

интегрирования; метод замены переменной подстановка, метод

интегрирования по частям.

Решение.

а) ;

Подстановка: . Найдем дифференциалы обеих частей подстановки

или . Произведем замену переменной в подынтегральном выражении и найдем интеграл .

б) .

В первом из интегралов, стоящих справа, введем подстановку . откуда или . Таким образом, .

Второй интеграл справа является табличным .

Итак, , где , две произвольные постоянные суммы неопределенных интегралов объединяют в одну.

в)

Подстановка:

Получим табличный интеграл типа . Возвращаясь к прежней переменной, будем иметь .

г) . Найдем его методом интегрирования по частям по формуле .

Примем , .

В первом из этих двух равенств обе части дифференцируем, чтобы найти , а во втором интегрируем, чтобы найти . Получим , (здесь произвольную постоянную интегрирования принимаем равной нулю, поскольку достаточно хотя бы одного значения ).

Применив формулу интегрирования по частям, получим

.

д) . Это интеграл от рациональной функции. Разложим подынтегральную функцию на простейшие дроби по известному правилу, предварительно разложив знаменатель дроби на множители . Тогда , где A, B, M, N – неопределенные коэффициенты, которые надо найти. Приведя обе части последнего равенства к общему знаменателю, найдем

.

Такое равенство отношений с одинаковыми знаменателями возможны только в случае равенства числителей, то есть .

Приравнивая коэффициенты при x в одинаковых степенях в левой и правой частях последнего равенства, получим систему уравнений

Решение системы:

Переходим к интегрированию

!! .

Приведем две задачи геометрического характера, связанные с вычислениями определенного интеграла.

 

Задача 12. Вычислить площадь фигуры, ограниченной линиями ,

, (рис.2)

  Решение. Фигура ОМА (рис.4) ограниченная данными линиями, состоит из двух частей ОМВ и ВМА, представляющих собою частные случаи криволинейных трапеций, ограниченных сверху кривой на и примой на . Таким образом искомая площадь вычисляется с помощью определенного интеграла как сумма двух площадей по формуле

рис. 4.

 

Определенные интегралы вычисляются по ф>рмуле Ньютона-Лейбница . Итак, площадь ОМА равна

.

 

Задача 13. Вычислить объем тела, полученного в результате вращения

вокруг оси фигуры, ограниченной линиями , ,

, . (рис. 5).

  Решение. Объем тела вращения находим по формуле

рис. 5.

 

Задача 14. Найти частное решение дифференциального уравнения

, удовлетворяющее начальным условиям

при .

Решение.

Это уравнение первого порядка является линейным, так как это удовлетворяет общему виду линейных уравнений . Будем искать решение в виде , где , - дифференцируемые функции от . Тогда . Подставляя , в данное уравнение, получим

или .

Приравняем нулю выражение, стоящее в скобках и получим уравнение с разделяющимися переменными или , или . Интегрируя обе части уравнения, находим или (Здесь полагают произвольную постоянную равной нулю). Откуда . Подставляя его уравнение , придем к его общему уравнению с разделяющимися переменными или , или , или , откуда .

А так как решение ищется в виде , то оно будет таким . Это- общее решение, в котором - произвольная постоянная. Решим теперь задачу Коши: из общего решения по заданным начальным условиям определим частное решение. Для этого подставим в общее решение начальные условия. Получим или , или , или , откуда . Подставляя это значение постоянной в общее решение, получим частное решение удовлетворяющее начальным условиям.

Задача 15. Найти область сходимости степенного ряда .

Решение.

Область сходимости называется множество всех точек сходимости данного ряда. Найдем радиус и интервал сходимости.

.

Где . Радиус сходимости . Тогда интервал сходимости . Исследуем сходимость ряда на концах этого интервала.

1) Подставим в данный степенной ряд . Получим числовой ряд . Этот ряд является расходящимся, так как не выполняется необходимое условие его сходимости .

2) Подставляя в степенной ряд , получим знакочередующийся числовой ряд , который расходится по той же причине: его общий член при стремится к 1, а не к 0.

Итак, область сходимости данного степенного ряда .

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных