Главная
Популярная публикация
Научная публикация
Случайная публикация
Обратная связь
ТОР 5 статей:
Методические подходы к анализу финансового состояния предприятия
Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века
Ценовые и неценовые факторы
Характеристика шлифовальных кругов и ее маркировка
Служебные части речи. Предлог. Союз. Частицы
КАТЕГОРИИ:
|
Свойства линейно зависимых и линейно независимых векторов
1. Если в систему векторов входит нулевой вектор, то она линейно зависима
.
2. Если в системе векторов имеется два равных вектора, то она линейно зависима.
3. Если в системе векторов имеется два пропорциональных вектора , то она линейно зависима.
4. Система из векторов линейно зависима тогда и только тогда, когда хотя бы один из векторов есть линейная комбинация остальных.
5. Любые векторы, входящие в линейно независимую систему, образуют линейно независимую подсистему.
6. Система векторов, содержащая линейно зависимую подсистему, линейно зависима.
7. Если система векторов линейно независима, а после присоединения к ней вектора оказывается линейно зависимой, то вектор можно разложить по векторам , и притом единственным образом, т.е. коэффициенты разложения находятся однозначно.
Докажем, например, последнее свойство. Так как система векторов — линейно зависима, то существуют числа , не все равные 0, что. В этом равенстве . В самом деле, если , то . Значит, нетривиальная линейная комбинация векторов равна нулевому вектору, что противоречит линейной независимости системы . Следовательно, и тогда , т.е. вектор есть линейная комбинация векторов . Осталось показать единственность такого представления. Предположим противное. Пусть имеется два разложения и , причем не все коэффициенты разложений соответственно равны между собой (например, ).
Тогда из равенства получаем .
Следовательно, линейная комбинация векторов равна нулевому вектору. Так как не все ее коэффициенты равны нулю (по крайней мере ), то эта комбинация нетривиальная, что противоречит условию линейной независимости векторов . Полученное противоречие подтверждает единственность разложения.
Векторное пространство называется n -мерным, если в нем можно найти n линейно независимых векторов, но больше, чем n линейно независимых векторов оно не содержит.
Размерность пространства – это максимальное число содержащихся в нем линейно независимых векторов.
Пространство, имеющее конечную размерность, называется конечномерным. Пространство, в котором можно найти сколь угодно много линейно независимых векторов, называется бесконечномерным.
Совокупность n линейно независимых векторов n - мерного векторного пространства называется его базисом.
Если каждой паре векторов x, y линейного пространства L поставлено в соответствие действительное число (x, y), так, что для любых x, y и z из L и любого действительного числа α справедливы следующие аксиомы:
(x, y) = (y, x),
(α ·x, y) = α ·(x, y),
(x + y, z) = (x, z) + (y, z),
(x, x) > 0 при x ≠ 0, (0, 0) = 0,
то в пространстве L определено скалярное произведение (x, y).
Если в линейном пространстве определено скалярное произведение, то такое пространство называется евклидовым пространством.
Теорема 1 (неравенство Коши-Буняковского)
| Для любых чисел
.
| Доказательство
| При неравенство верно. Допустим,
.
Докажем, что
.
Перепишем это неравенство, частично раскрыв скобки:
.
Легко заметить, что для того, чтобы доказать это неравенство, достаточно доказать
Перенеся все слагаемые в одну сторону, и сгруппировав их, получаем очевидное неравенство:
А это и доказывает неравенство Коши-Буняковского.
| Определение 2
| 1. Число называется средним арифметическим чисел .
2. Если , то число называется средним геометрическим чисел .
| Теорема 3 (неравенство Коши)
| Пусть , тогда
. (1)
| Доказательство
| Шаг первый: сначала индукцией докажем это неравенство для натуральных чисел вида . При m=1 надо доказать, что . Это неравенство эквивалентно , то есть . Последнее неравенство верно, значит, и первоначальное верно, так как они равносильны. Допустим, неравенство верно при m=k, то есть
. (2)
Докажем неравенство (1) для m=k+1, то есть докажем, что
.
В самом деле, .
Итак, мы доказали неравенство Коши, когда количество чисел в средних есть степень двойки. А как быть с остальными? Для них мы докажем неравенство Коши, используя еще одну модификацию индукции – "индукцию вниз". Допустим, что неравенство Коши верно для n=k, то есть допустим, что
, (3)
и докажем это неравенство для n=k-1. Для этого в неравенстве Коши положим , тогда (3) будет иметь вид:
После элементарных алгебраических преобразований получили:
.
Сократим неравенство на второй множитель правой части:
.
И, наконец, возведем обе части неравенства в степень :
.
Неравенство Коши доказано полностью.
|
Билет 14
Не нашли, что искали? Воспользуйтесь поиском:
|