Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






УРАВНЕНИЕ ПЛОСКОСТИ




Общее уравнение плоскости

Любую плоскость можно задать уравнением плоскости первой степени вида

A x

+

B y

+

C z

+

D

= 0

где A, B и C не могут быть одновременно равны нулю.

 

Уравнение плоскости в отрезках

Если плоскость пересекает оси OX, OY и OZ в точках с координатами (

a

, 0, 0), (0,

b

, 0) и (0, 0,

с

), то она может быть найдена, используя формулу уравнения плоскости в отрезках

x + y + z = 1
a b c

 

Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой

Чтобы составить уравнение плоскости, зная координаты точки плоскости M(

x

0,

y

0,

z

0) и вектора нормали плоскости

n

=

{

A; B; C

}

можно использовать следующую формулу.

A

(

x - x

0) +

B

(

y - y

0) +

C

(

z - z

0) = 0

 

Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой

Если заданы координаты трех точек A(

x

1,

y

1,

z

1), B(

x

2,

y

2,

z

2) и C(

x

3,

y

3,

z

3), лежащих на плоскости, то уравнение плоскости можно найти по следующей формуле

x - x 1 y - y 1 z - z 1 = 0
x 2 - x 1 y 2 - y 1 z 2 - z 1
x 3 - x 1 y 3 - y 1 z 3 - z 1

УРАВНЕНИЕ ПРЯМОЙ В ПРОСТРАНСТВЕ

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

A x

+

B y

+

C

= 0

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

y

=

k x

+

b

 

где

k

- угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных