ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Підписано до друку 2005 р. Формат 60 84/16. Папір офсетний.Гарнітура Book Antiqua. Друк – ризографія. Ум. друк.арк. _____ Обл.-вид.арк. Тираж 273 прим. Зам. № _____
________________________________________________________________ Донецький державний університет економіки і торгівлі ім. М. Туган-Барановського Редакційно-видавничий відділ 83023, м. Донецьк, вул. Харитонова, 10. Тел.: (062) 97-60-50
Свідоцтво про внесення до Державного реєстру видавців, виготівників і розповсюджувачів видавничої продукції ДК № 1106 від 5.11.2002 р.
содержание
ВВедение Современному экономисту необходима серьезная математическая подготовка – это положение общепризнанно. К числу наиболее важных для экономистов областей математики относятся, по-видимому, линейная алгебра и, в особенности, матричная алгебра. Дело в том, что экономико-математические модели, которые широко применяются сейчас в исследовательской и плановой работе, часто предназначены для описания взаимосвязи экономических структур, их динамики во времени, зависимости от ряда факторов и т.д. Один из наиболее компактных способов описания таких структур, зачастую крупных и сложных, заключается, как известно, в матричном отображении. Применение матриц не только позволяет “экономно” формализовать поставленную проблему, но и, что существенно важнее, использовать в экономических расчетах многие достижения матричной алгебры. Экономисты, проводящие расчеты по оптимизационным моделям, все чаще испытывают необходимость в овладении техникой матричной алгебры. Так, формулировка транспортной задачи или задачи оптимального распределения производственных ресурсов обычно сопровождается построением матриц исходных данных, а алгоритм решения подобных задач предполагает операции над ними. Методы матричной алгебры в настоящее время широко применяются не только в нормативных экономико-математических моделях, но и в статистических расчетах с обработкой больших массивов информации. В этой связи можно сослаться, скажем, на методы анализа отчетного межотраслевого баланса: прибегая к операциям с матрицами, экономисты и статистики получают возможность не только представить все балансовые расчеты в весьма компактной и наглядной форме, но и использовать более удобные вычислительные процедуры при расчете тех или иных народнохозяйственных показателей (например, при определении коэффициентов полных затрат). Матричное исчисление применяется и во многих разделах математической статистики; оно широко используются, например, при анализе так называемых взаимозависимых уравнений регрессии, в факторном и дисперсионном анализе. Присоединение Украины к Болонскому процессу предполагает использование тех методологических и методических подходов в образовательной деятельности, которые проверены временем и составляют суть Европейской системы образования. Проводимый эксперимент по внедрению кредитно-модульной системы обучения направлен на поиск соответствующих форм и путей организации работы, которая бы рационально и сбалансировано объединяла аудиторную работу студента и его самостоятельную работу. Данное методическое пособие нацелено на стимулирование и самоорганизацию систематической учебной деятельности студента по соответствующему модулю. Излагаемые понятия, определения, свойства, теоремы, знакомят с элементами теории, разобранные типовые примеры иллюстрируют конкретные приложения теоретического материала, а многочисленные задания с альтернативными ответами предоставляют студенту широкое поле для самостоятельных упражнений. Задания разделены на три части. Первая часть посвящена определителям, матрицам и системам линейных уравнений, вторая – элементам векторной алгебры, третья – прямой линии на плоскости. Значительная часть заданий представляет собой систему тестов для проверки полученных знаний, все задания имеют по 4 варианта ответов. Наличие 30 вариантов, в каждом из которых по 8-9 заданий, обеспечивает организацию индивидуальной и самостоятельной работы студентов и позволяет глубже оценить знания по рассмотренному модулю. В пособии содержится материал, составляющий логически завершенную часть курса (модуль), вместе с тем это всего лишь часть единого целого курса высшей математики, о котором у студентов должно сложиться цельное впечатление.
Не нашли, что искали? Воспользуйтесь поиском:
|