Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Матрицы, методом Гаусса.




Решение системы линейных уравнений методом Крамера

Итак, если система линейных уравнений по теореме Кронекера-Капелли имеет решение, а это условие наш онлайн калькулятор проверяет всегда, прежде чем браться за решение, то его можно найти методом Крамера, используя следующие формулы: для вычисления корней уравнений xi (i=1,n)

xi=Δin/Δn (i=1,n),

где Δn=det A, а Δin являются определителями n-го порядка, которые получаются из Δn путем замены в нем i-го столбца столбцом свободных членов исходной системы.

Что бы закрепить теоретический материал, обратимся к практике, решим систему из трех уравненийметодом Крамера.

76x1-7x2-6x3=-5

10x1+12x2-7x3=11

-16x1+10.5x2-13x3=-10

Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E:

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю.

 

7. Определение системы координат на плоскости: декартова и




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных