ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Вычисление двойного интегралаТеорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями х = a, x = b, (a < b), y = j(x), y = y(x), где j и y - непрерывные функции и j £ y, тогда
y y = y(x)
D
y = j(x)
a b x Пример. Вычислить интеграл , если область D ограничена линиями: y = 0, y = x2, x = 2. y
D
0 2 x
= = Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями y = c, y = d (c < d), x = F(y), x = Y(y) (F(y) £ Y(y)), то Пример. Вычислить интеграл , если область D ограничена линиями y = x, x = 0, y = 1, y = 2. y y = x D 0 x
Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2. = = Пример. Вычислить двойной интеграл , если область интегрирования ограничена линиями ху=1, у = , х = 2.
1.
2.
3.
Не нашли, что искали? Воспользуйтесь поиском:
|