Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Бесконечно малые и бесконечно большие последовательности.




Связь между ними.

 

Определение: Последовательность {xn} называется бесконечно малой, если для любого, сколь угодно малого, положительного числа e, найдется номер последовательности N, зависящий от , начиная с которого выполняется неравенство |xn|<e.

.

Определение: Последовательность {xn} называется бесконечно большой, для любого, сколь угодно большого, положительного числа А, найдется номер последовательности N, начиная с которого выполняется неравенство |xn|>A.

.

Теорема: Бесконечно малые (б/м) и бесконечно большие (б/б) последовательности взаимообратные.

Док-во:

1) б/б есть обратная величина для б/м.

Пусть {xn} – б/м при n®¥. По определению: " > $N: "n>N Þ |xn|<e.

Перейдем к обратным величинам: . Обозначим . Если e – б/м, то А – б/б. Тогда , что означает из определения, что – б/б.

2) б/м есть обратная величина для б/б.

Пусть {xn} ‒ б/б при n®¥. По определению: "A>0 $N: "n>N Þ |xn| > A.

Перейдем к обратным величинам: . Обозначим . Если А – б/б, то e – б/м. Тогда , что означает из определения, что ‒ б/м.

Ч.т.д.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных