ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Средне индикаторное давление 4 страницаТаким образом, двухрежимный регулятор действует как регулятор холостого хода и как предельный. На рабочих режимах машинист рукояткой управления задает подачу топлива, а угловая скорость устанавливается в результате взаимодействия крутящего момента и момента сопротивления в точке равновесия. Гидромеханические регуляторы действуют относительно медленно и использование их в качестве регуляторов безопасности недостаточно эффективно. Они применяются обычно в качестве многорежимных регуляторов, а для защиты от чрезмерной скорости часто предусматриваются дополнительные предельные регуляторы прямого действия, настраиваемые на угловую скорость выше номинальной.
Устойчивость работы зависит главным образом от параметров регулятора. Если орган управления установлен в положение номинальной скорости, а момент сопротивления пересекает внешнюю характеристику при меньшей скорости, регулятор достигает положения упора, а режим дизеля с нагрузкой устанавливается путем саморегулирования и устойчивость его работы зависит лишь от характеристик крутящего момента и момента сопротивления. При двухрежимном регуляторе (рис. 3.16 б) положение органа управления задает внешнюю или частичные характеристики дизеля, ограничивающиеся по скорости регуляторными характеристиками, наклон которых, как и в предыдущем случае, зависит от степени статизма. Режим работы определяется также пересечением момента сопротивления АВ с одной из характеристик, но в этом случае положение органа управления задает подачу топлива, а угловая скорость зависит от момента сопротивления. Устойчивость работы определяется в этом случае характеристиками дизеля и нагрузки. Если орган управления задает подачу топлива больше, чем требуется по нагрузке (точка В), то регулятор уменьшает подачу топлива, и тогда устойчивость зависит от параметров регулятора.
Основные выводы и соотношения, приведенные выше, справедливы и для ГТУ. Однако необходимо учитывать и некоторые особенности работы и характеристик последних. К валу турбины одновальной ГТУ приложены момент сопротивления компрессора М к и нагрузки М с. Уравнение движения одновальной ГТУ можно написать в форме
где МТ=f(х, nд) – крутящий момент турбины; J – момент инерции вращающихся масс, связанных с валом турбины. Если принять давление и температуру наружного воздуха постоянными, то Мк зависит только от угловой скорости и изменяется приблизительно пропорционально второй степени последней (рис. 3.17). Если в трубопроводе, по которому подводится топливо к регулирующему органу (топливному клапану), давление поддерживается постоянным независимо от угловой скорости вала турбины, например, при наличии регулятора давления, то крутящий момент турбины при различных положениях регулирующего органа падает по мере увеличения угловой скорости (линии АВ, А1В1...). Если же при увеличении угловой скорости турбины пропорционально или более интенсивно растет давление топлива, то крутящий момент также возрастает (линии АС, А1С1...). Такие характеристики получаются, например, когда топливо поступает к топливному клапану от насоса, приводимого турбиной без промежуточного регулятора давления. При холостом ходе (Мс =0) в первом случае возможность устойчивой работы ГТУ обеспечивается благодаря взаимному расположению характеристик С2Е2 и А3В3. Если момент турбины растет с увеличением угловой скорости, например по линии С2Е2, режим работы ГТУ может оказаться статически неустойчивым. При нагрузке в первом случае статическая устойчивость возможна даже при относительно неблагоприятной характеристике момента нагрузки, например, при М = сопst. Когда момент турбины растет при увеличении скорости, возможность устойчивой работы, в особенности при малых угловых скоростях, существенно зависит от наклона характеристики момента нагрузки и не всегда обеспечивается. Поэтому при характеристиках турбины вида СЕ, С1Е1,... автоматическое регулирование, как правило, применяется. При постоянном давлении топлива ГТУ может работать без регулятора. Однако нередко регуляторы используют и в этом случае для лучшей стабилизации скорости. В ГТУ со свободной тяговой турбиной к валу компрессорной турбины приложен только момент сопротивления компрессора и условия устойчивой работы последнего зависят от характеристик турбины и компрессора. Как правило, для турбокомпрессора предусматривается автоматическое регулирование угловой скорости. Режим тяговой турбины определяется характеристиками турбины, близкими по форме к линиям АВ, А1В1,..., и характеристикам момента нагрузки. Если момент нагрузки растет при увеличении угловой скорости, в регуляторе нет необходимости. В системы автоматического регулирования ГТУ часто включают узлы ограничения максимальной температуры газов перед турбиной и мощности при низких, температурах наружного воздуха. Кроме того, для ГТУ требуется более точное, чем для дизеля, программное регулирование мощности в зависимости от угловой скорости для предотвращения опасности помпажных колебаний и т. п. Если в процессе регулирования подача топлива увеличивается быстрее, чем угловая скорость компрессора, то температура газов перед турбиной может превысить допустимую. Поэтому в систему регулирования вводятся устройства, замедляющие перемещение регулирующего органа. В системах автоматического регулирования газотурбовозов с электропередачей предусматривают, как правило, объединенное регулирование ГТУ и генератора. Регуляторы применяют многорежимные с дистанционным управлением от рукоятки контроллера машиниста. Число положений контроллера выбирается значительно больше, чем на тепловозах (20—30), так как резкое изменение режима работы ГТУ опасно. В ряде газотурбовозов при перемещении рукоятки контроллера одновременно с изменением настройки регулятора на более высокую угловую скорость увеличивается посредством второго дистанционного привода управления наибольшая подача топлива, поддерживаемая регулятором путем изменения возбуждения генератора. Для устранения опасности резкого увеличения подачи топлива при быстром перемещении рукоятки сразу на несколько положений, в контроллер вводят блокировки, препятствующие повороту сразу на несколько положений, или устройства, замедляющие поворот рукоятки.
Лекция 4
1. Характеристики тяговых аккумуляторных батарей. 2. Характеристики топливных элементов. 3. Характеристики комбинированных энергоустановок.
К электрохимическим аккумуляторным батареям, используемым на транспортных средствах, предъявляют следующие требования: – высокая удельная энергоемкость; – минимальный саморазряд; – высокий КПД при заряде и разряде; – малое внутреннее сопротивление; – широкий диапазон рабочих температур; – минимум токсичных газовыделений; – взрыво- и пожаробезопасность в эксплуатации; – простота в обслуживании; – механическая прочность, и надежность, – длительный срок службы и хранения; – минимальные массогабаритные и стоимостные показатели и др. Тяговые аккумуляторные батареи (ТАБ) – весьма сложная электрохимическая система с непрерывно меняющимися параметрами. За период разряда аккумуляторов в них происходит распад исходных и образование новых химических соединении, перераспределение плотностей электролита, газовыделение и т.д. Поэтому параметры ТАБ могут изменяться в функции времени, режима разряда, температуры и пр. В условиях эксплуатации ТАБ работают в неустановившихся прерывистых режимах разряда (а при наличии рекуперативного торможения – и кратковременных подзарядов) с изменяющимся значением разрядного (зарядного) тока. В связи с этим аналитические выражения, связывающие параметры ТАБ (ток, время разряда, емкость, напряжение батареи и др), найти весьма сложно, их можно получить только для конкретных типов аккумуляторов и определенных режимов и условий их работы в неудобной для практического применения форме. Поэтому для ТАБ целесообразно пользоваться схемой замещения и графическими зависимостями.
Электродвижущаяся сила ТАБ большинства известных электрохимических аккумуляторов не зависит от температуры электролита и окружающей среды и за время полного разряда батареи снижается на 10…15 % от начальной величины. Значением R0 в ряде случаев можно пренебречь ввиду его малости ( В импульсном режиме ТАБ пульсация ее выходного напряжения определяет полное внутреннее сопротивление, модуль которого
где Индуктивное сопротивление обусловлено геометрией ТАБ и пространственной ориентацией токопроводящих элементов, образующих контуры с индуктивностью 0,2…1 мкГн на один элемент. Емкостное сопротивление определяется процессами поляризации электролита. Падение напряжения на сопротивлении Следует учитывать явление непрерывного саморазряда ТАБ, происходящего вследствие выделения кислорода на положительном электроде и из за конечного значения сопротивления изоляции. За первые сутки хранения в заряженном состоянии при температуре окружающей среды 20 °С за счет саморазряда запасенная энергия ТАБ уменьшается приблизительно на 5 %. При дальнейшем хранении скорость саморазряда падает Для ТАБ наиболее важными являются внешние характеристики
где Поскольку при любом разрядном токе степень заряженности аккумуляторной батареи с течением времени падает, то внешние характеристики ТАБ целесообразно давать в пространственной системе координат (см. рис. 4.3). Полезная мощность батареи
На рис. 4.4 представлены зависимости
Так как по мере разряда батареи уменьшается ЭДС и возрастает внутреннее сопротивление, то максимальный пусковой ток следует вычислять для Q = 20…25 %. Например, для батареи указанного типа максимальный пусковой ток не должен превышать 420 А.
В рабочем диапазоне тока нагрузки
где
Функциональная связь в БТЭ между параметрами Таким образом, внешние характеристики БТЭ –
В КЭУ со вторым сочетанием источников, где пусковой источник – ТАБ, а тяговый – теплоэлектрический преобразователь (ТЭП), аккумуляторная батарея работает непродолжительное время, имеет сравнительно небольшой запас энергии и обеспечивает в основном требуемую динамику разгона электромобиля, а его общий пробег за транспортный цикл осуществляется за счет энергии ТЭП, у которого способы пополнения запаса энергии (топлива) и влияние режимов на внешние характеристики не являются определяющими показателями. Иначе: внешние характеристики КЭУ обусловлены как типом применяемых источников и их режимами в течение транспортного цикла электромобиля, так и соответствующим сочетанием свойств и характеристик каждого из них. Внешние характеристики двух указанных типов КЭУ приведены на рис. 4.8 и 4.9 (для упрощения характеристики ТАБ показаны линейными).
На рис. 4.8 и 4.9 приведены также зависимости Рэу(Iэу), соответствующие началу и концу транспортного цикла.
При поочерёдной работе источников (рис. 4.10 б) в течение времени Не нашли, что искали? Воспользуйтесь поиском:
|