Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Теоретичні відомості про Метод Гауса розв’язування систем лінійних рівнянь




 

 

Метод Гауса називають ще методом послідовного виключення невідомих. Він полягає в наступному: систему рівнянь приводять до рівносильної їй системі з трикутною матрицею (системи називаються рівносильними, якщо множини їх розв’язків співпадають). Дані дії називаються прямим ходом. З одержаної системи невідомі знаходять за допомогою послідовних підстановок, які називають зворотнім ходом. При виконанні прямого ходу використовують наступні перетворення:

1. множення або ділення коефіцієнтів вільних членів на одне і теж число;

2. додавання або віднімання рівнянь;

3. перестановка рівнянь системи;

4. виключення з системи рівнянь, в яких всі коефіцієнти при невідомих дорівнюють нулю.

Універсальність методу Гауса полягає в тому, що за допомогою нього можна розв’язати систему будь-якого порядку.

Задача 2. Розв’язати систему лінійних рівнянь методом Гауса:

a)

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных