Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Наследственный аппарат клетки. Роль ДНК и РНК




Биологическая роль нуклеиновых кислот. Название «нуклеиновые кислоты» происходит от латинского слова «нуклеус», т. е. ядро: они впервые были обнаружены в клеточных ядрах. Биологическое значение нуклеиновых кислот очень велико. Они играют центральную роль в хранении и передаче наследственных свойств клетки, поэтому их часто называют веществами наследственности. Известно, что любая клетка возникает в результате деления материнской клетки. При этом дочерние клетки наследуют свойства материнской. Свойства же клетки определяются главным образом ее белками. Нуклеиновые кислоты обеспечивают в клетке синтез белков, точно таких же, как в материнской клетке.

Существуют два вида нуклеиновых кислот дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК).

Дезоксирибонуклеиновая кислота (ДНК). Роль хранителя наследственной информации у всех клеток – животных и растительных – принадлежит ДНК. Схема строения ДНК изображена на рисунке [74]. Молекула ДНК представляет собой две спирально закрученные одна вокруг другой нити. Ширина такой двойной спирали ДНК невелика, около 2 нм. Длина же ее в десятки тысяч раз больше – она достигает сотен тысяч нанометров. Между тем самые крупные белковые молекулы в развернутом виде достигают в длину не более 100-200 нм. Таким образом, вдоль молекулы ДНК могут быть уложены одна за другой тысячи белковых молекул. Молекулярная масса ДНК соответственно исключительно велика – она достигает десятков и даже сотен миллионов.

Обратимся к структуре ДНК. Каждая нить ДНК представляет собой полимер, мономерами которого являются нуклеотиды. Нуклеотид это химическое соединение остатков трех веществ: азотистого основания, углевода (моносахарида – дезоксирибозы) и фосфорной кислоты. ДНК всего органического мира образованы соединением четырех видов нуклеотидов. Их структуры приведены на рисунке. Как видно, у всех четырех нуклеозидов углевод и фосфорная кислота одинаковы.

Нуклеотиды отличаются только по азотистым основаниям, в соответствии с которыми их называют: нуклеотид с азотистым основанием аденин (сокращенно А), нуклеотид с гуанином (Г), нуклеотид с тимином (Т) и нуклеотид с цитозином (Ц). По размерам А ранен Г, а Т равен Ц; размеры А и Г несколько больше, чем Т и Ц.

Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и фосфорную кислоту соседнего. Они соединяются прочной ковалентной связью.

Итак, каждая нить ДНК представляет собой полинуклеотид. Это длинная цепь, в которой в строго определенном порядке расположены нуклеотиды.

Рассмотрим теперь, как располагаются относительно друг друга нити ДНК, когда образуется двойная спираль, и какие силы сдерживают их рядом.

Как видно, азотистые основания одной цепи «стыкуются» с азотистыми основаниями другой. Основания подходят друг к другу настолько близко, что между ними возникают водородные связи.

В расположении стыкующихся нуклеотидов имеется важная закономерность, а именно: против А одной цепи всегда оказывается Т на другой цепи, а против Г одной цепи – всегда Ц. Оказывается, что только при таком сочетании нуклеотидов обеспечивается, во-первых, одинаковое но всей длине двойной спирали расстояние между цепями и, во-вторых, образование между противолежащими основаниями максимального числа водородных связей (три водородные связи между Г и Ц и две водородные связи между А и Т). В каждом из этих сочетаний оба нуклеотида как бы дополняют друг друга. Слово «дополнение» на латинском языке «комплемент». Принято поэтому говорить, что Г является комплементарным Ц, а Т комплементарен А. Если на каком-нибудь участке одной цени ДНК один за другим следуют нуклеотиды А, Г, Ц, Т, А, Ц. Ц, то на противолежащем участке другой цепи окажутся комплементарные им Т, Ц, Г, А, Т, Г, Г. Таким образом, если известен порядок следования нуклеотидов в одной цени, то по принципу комплементарности сразу же выясняется порядок нуклеотидов в другой цени.

Большое число водородных связей обеспечивает прочное соединение нитей ДНК, что придает молекуле устойчивость и в то же время сохраняет ее подвижность: под влиянием фермента дезоксирибонуклеазы она легко раскручивается.

ДНК содержится в ядре клетки, а также в митохондриях и хлоропластах. В ядре ДНК входит в состав хромосом, где она находится в соединении с белками.

Удвоение ДНК. Принцип комплементарности, лежащий а основе структуры ДНК, позволяет понять, как синтезируются новые молекулы ДНК незадолго перед делением клетки. Этот синтез обусловлен замечательной способностью молекулы ДНК к удвоению и определяет передачу наследственных свойств от материнской клетки к дочерним.

Двойная спираль ДНК под влиянием фермента начинает с одного конца раскручиваться, и на каждой цепи из находящихся в окружающей среде свободных нуклеотидов собирается новая цепь. Сборка новой цепи идет в точном соответствии с принципом комплементарности. Против каждого А встает Т, против Г Ц и т. д. В результате вместо одной молекулы ДНК возникают две молекулы такого же точно нуклеотидного состава, как и первоначальная. Одна цепь в каждой вновь образовавшейся молекуле ДНК происходит из первоначальной молекулы, а другая синтезируется вновь.

Рибонуклеиновые кислоты (РНК). Структуры РНК сходны со структурами ДНК. РНК, как и ДНК, полинуклеотиды, но, в отличие от ДНК, молекула РНК одноцепочечная. Как и в ДНК, структура РНК создается чередованием четырех типов нуклеотидов, но состав нуклеотидов РНК несколько отличается от нуклеотидов ДНК, т. е. углевод в РНК не дезоксирибоза, а рибоза, отсюда и название РНК – рибонуклеиновая кислота. Кроме того, в РНК вместо азотистого основания тимина входит другое, близкое по строению основание, называемое урацилом (У).

В клетке имеется несколько видов РНК. Все они участвуют в синтезе белка. Первый вид – транспортные РНК (т-РНК). Это самые маленькие по размерам РНК. Они связывают аминокислоты и транспортируют их к месту синтеза белка. Второй вид – информационные РНК (и-РНК). По размерам они раз в 10 больше т-РНК. Их функция состоит в переносе информации о структуре белка от ДНК к месту синтеза белка. Третий вид – рибосомные РНК (р-РНК). Они имеют наибольшие размеры молекулы и входят в состав рибосом.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных