Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Группа динамических систем 4 страница




 

В семье Уинфри колледж не посещал никто. Как признавался сам исследователь, он начал, не имея надлежащего образования. Его отец, поднявшись по служебной лестнице в страховом бизнесе от простого служащего до вице-президента компании, почти ежегодно переезжал с семьей то на север, то на юг Восточного побережья. Артуру пришлось сменить не одно учебное заведение, прежде чем он закончил среднюю школу. В нем зрело убеждение, что все интересное в мире связано с биологией и математикой, но ни одно из стандартных сочетаний этих двух предметов не отдает должного тому, что действительно интересно. Уинфри решил не идти проторенным путем. Пять лет он постигал инженерную физику в Университете Корнелл, занимаясь также прикладной математикой и изучая все практические методы лабораторных исследований. Готовясь к работе в военно-промышленном комплексе, Уинфри получил степень доктора в области биологии. Он пытался по-новому сочетать эксперименты с теорией. Молодой ученый начал свою деятельность в Университете Джона Хопкинса, но вскоре оставил его из-за разногласий на факультете. Уинфри продолжил работу в Принстоне, откуда ушел по той же причине, и наконец обосновался в Университете Чикаго.

Уинфри принадлежит к редкому типу мыслителей-биологов, которые привносят в свои исследования физиологии четкое ощущение геометрических форм. В начале 70-х годов он начал изучать биодинамику, заинтересовавшись биологическими часами — суточными ритмами. В данной области традиционно преобладал подход ученых-натуралистов, полагавших, что такой ритм согласуется с ритмами животных, природы и т. д. С точки зрения Уинфри, проблему суточных ритмов следовало изучать, придерживаясь математического стиля мышления. «Рассуждая о нелинейной динамике, я понял, что эту проблему можно и нужно рассматривать через посредство качественных характеристик. Никто не имеет представления о том, каков механизм биологических часов. Итак, у нас есть две альтернативы: можно подождать, пока биохимики выяснят его устройство, а затем попытаться вывести определенный тип поведения из уже известного, а можно призвать на помощь теорию комплексных систем, нелинейную и топологическую динамику. Я выбрал последнее».

Однажды ученый поставил в своей лаборатории множество клеток с комарами. Каждый турист знает, что эти насекомые роятся в прохладном воздухе сумерек. В лаборатории, где днем и ночью температура и освещенность оставались неизменными, суточный цикл комаров сократился с 24 до 23 часов. Каждые 23 часа они начинали жужжать особенно интенсивно. В природе ориентироваться во времени насекомым помогает вспышка света, которую они видят ежедневно, она как бы запускает их внутренние часы.

Варьируя уровень освещенности в помещении с комарами, Уинфри добивался сокращения или удлинения суточного цикла. Ученый сопоставлял эффект со временем световой вспышки. Затем вместо выяснения биохимической подоплеки процессов он предпринял топологическое исследование, сконцентрировав внимание на качественной, а не количественной стороне полученных данных. Ученый пришел к неожиданному выводу: в геометрии присутствовала некая особенность, точка, отличная от всех других. Рассматривая эту своеобразную черту, Уинфри предположил, что строго определенная по продолжительности вспышка света сбивает ход биологических часов насекомых или любых других живых существ.

Предположение было смелым, но эксперименты Уинфри подтвердили его. «Придя в лабораторию ровно в полночь, вы воздействуете на комаров определенным количеством фотонов, и такой особенно точный и выверенный по времени толчок „выключает“ внутренние часы насекомых. Комар лишается сна — то притихает, то жужжит, но все невпопад. Так продолжается, пока вы не устанете наблюдать и не устроите насекомым новую встряску. Суточный ритм комаров беспрестанно нарушается». В начале 70-х годов математический подход Уинфри к явлению суточного ритма не вызвал особого интереса, и оказалось непросто опробовать лабораторную методику на биологических видах, которые стали бы возражать против длительного заточения в клетки.

Нарушение суточного ритма человека при стремительной смене часовых поясов, а также бессонница входят в число нерешенных вопросов биологии. Они вынуждают людей глотать бесполезные пилюли. Исследователям удалось собрать немало данных в ходе экспериментов, участниками которых выступали студенты, пенсионеры или драматурги, спешащие поскорей закончить пьесу. За несколько сотен долларов испытуемые соглашались существовать в условиях «временной изоляции»: никакого дневного света, никаких температурных изменений, никаких часов и телефонов. Характерные для людей суточные циклы «сон — бодрствование», а также циклы изменения температуры тела являются своего рода нелинейными осцилляторами, которые сами собой восстанавливаются после небольших пертурбаций. В условиях изоляции, при отсутствии ежедневно возобновляемых стимулов, цикл изменений температуры увеличивается до 25 часов, причем низкие значения приходятся на стадию сна. Эксперименты немецких ученых выявили, что по истечении нескольких недель цикл «сон — бодрствование», обособившись от температурного цикла, становится неупорядоченным. Люди бодрствуют в течение 20 или даже 30 часов, за которыми следуют 10 или 12 часов сна. При этом испытуемые не только не замечают удлинения их «суток», но и отказываются верить, когда им об этом сообщают. В середине 80-х годов систематический подход Уинфри был применен к людям. Первой испытуемой стала пожилая женщина, вязавшая вечерами перед источником яркого света. Ее суточный цикл резко изменился. По словам женщины, она испытывала великолепные ощущения, будто ехала в машине с откидным верхом. Что же касается Уинфри, то он пошел дальше, обратившись к проблеме сердечных ритмов.

Впрочем, сам Уинфри не сказал бы, что «пошел дальше». Для него объект изучения не изменился — другой химизм, но та же динамика. Так или иначе, после того как он стал невольным и беспомощным свидетелем внезапных смертей, вызванных сердечной недостаточностью, сердце сделалось для него предметом особого интереса. Однажды на его глазах во время летнего отпуска умер его родственник. Во второй раз в пруду, где купался Уинфри, утонул мужчина. Почему же неизменный ритм, заставляющий сердце то расслабляться, то напрягаться два миллиарда (или более) раз на протяжении жизни, вдруг становится таким неуправляемым и фатально неистовым?

 

Уинфри поведал историю о своем предшественнике, Джордже Майнсе, которому в 1914 г. было 28 лет. В лаборатории монреальского Университета Макгилл Майнс соорудил небольшое устройство, способное передавать сердцу малые, четко регулируемые электрические импульсы.

«Когда Майнс решил, что настала пора приступить к экспериментам на людях, он выбрал в подопытные себя самого, — пишет Уинфри. — В тот вечер, около шести часов, привратник заметил, что в лаборатории стоит непривычная тишина, и, встревожившись, направился туда. Майнс лежал под одной из скамей. Рядом с ним стоял аппарат, довольно сложное по тем временам электрическое устройство. К груди, прямо над сердцем, был прикреплен разбитый механизм. Счетчик, находившийся рядом, все еще фиксировал прерывистое биение сердца. Майнс умер, не приходя в сознание».

Не трудно сообразить, что небольшой, но точно рассчитанный по времени шок может повергнуть сердце в состояние фибрилляции. Даже Майнс догадался об этом незадолго до смерти. Другие виды шокового воздействия способны ускорить или задержать следующий удар, как это происходит с суточными ритмами. Но есть одно различие между человеческим сердцем и биологическими часами, которое нельзя не учитывать даже в упрощенной модели: сердце имеет пространственную конфигурацию. Вы можете взять его в руки и проследить электрическую волну в трех измерениях.

Впрочем, для постановки подобного опыта требуется немалое искусство. Рэймонд Е. Айдекер из медицинского центра Университета Дьюка, прочитав статью Уинфри в журнале «Сайентифик Америкен» за 1983 г., отметил четыре конкретных прогноза относительно стимуляции и остановки мерцания сердца, основанных на нелинейной динамике и топологии. Айдекер с настороженностью отнесся к прочитанному. Прогнозы казались чересчур умозрительными и, с точки зрения кардиолога, слишком абстрактными. В течение трех ближайших лет все они подтверждались, и Айдекер занялся претворением в жизнь ускоренной программы по сбору более разноплановых данных в целях совершенствования динамического подхода к сердечной деятельности. Как выразился Уинфри, это был своего рода «кардиологический эквивалент циклотрона».

Электрокардиограмма, которую снимают врачи, представляет лишь объемную одномерную запись. Во время операции на сердце хирург может, взяв электрод, передвигать его от одной зоны в сердце к другой, получая данные с 50 или 60 точек в течение 10 минут и таким образом воспроизводя комбинированное изображение. Но при фибрилляции эта техника бесполезна, поскольку изменения и мерцание сердца очень быстры. Методика Айдекера, которая в значительной степени зависела от обработки данных компьютером в реальном времени, предусматривала создание «паутины» из 128 электродов, заключающей в себе сердце, словно носок ступню. По мере того как сквозь мышечную ткань проходил импульс, электроды фиксировали поле напряжения, а компьютер строил карту сердечной деятельности.

В намерения Айдекера, кроме проверки теоретических идей Уинфри, входила также доработка конструкции электрических устройств, используемых для остановки фибрилляции. Бригады скорой помощи используют стандартные дефибрилляторы, чтобы сквозь грудную клетку воздействовать на сердце пострадавшего мощным импульсом электрического тока. Опытным путем кардиологи разработали небольшой имплантант, вживляемый внутрь грудной клетки пациентов, которые входят в группы риска. Такой кардиостимулятор, который чуть больше синусного узла сердца, «прислушивается» к сердцебиению, ожидая, когда возникнет потребность в электрическом воздействии. Айдекер начал выстраивать физическую базу, необходимую для того, чтобы разработка новых типов дефибрилляторов основывалась не только на опыте, но и на соображениях теоретического характера.

 

Почему к сердцу, ткани которого состоят из взаимосвязанных разветвляющихся волокон, ответственных за транспорт ионов кальция, калия и натрия, должны применяться законы хаоса? Этот вопрос ставил в тупик ученых в Университете Макгилл и Массачусетском технологическом институте.

Леон Гласс и его коллеги Майкл Гевара и Альвин Шрайер разрабатывали одно из наиболее спорных направлений во всей недолгой истории нелинейной динамики. В своих опытах они использовали крошечные конгломераты сердечных клеток, взятые у семидневных зародышей цыплят. Эти группы клеток, размером в одну двухсотую часть дюйма каждая, после помещения их на блюдце и встряхивания демонстрировали самопроизвольное биение с частотой примерно раз в секунду при отсутствии стимулов извне. Пульсация была хорошо видна в микроскоп. Следующий этап заключался в наложении внешнего ритма. Для этого ученые Университета Макгилл использовали микроэлектрод, тонкую стеклянную трубку, один конец которой присоединялся к тонкому наконечнику, а другой — к одной из клеток. Через трубку пропускался электрический ток, стимулирующий ритмичные сокращения клеток, частота которых могла варьироваться по желанию экспериментаторов.

Ученые подвели итоги своих исследований в журнале «Сайенс» в 1981 г. следующим образом: «Причудливое динамическое поведение, которое прежде наблюдалось в математических задачах и экспериментах в области физики, может быть присуще и биологическим осцилляторам, подвергаемым периодическим возмущениям». Они наблюдали раздвоения периодов в пульсации клеток, которая разветвлялась снова и снова, с каждым изменением ритма. Исследователи построили сечения Пуанкаре и изучили прерывистость сердечных биений. «При возбуждении частицы сердца цыпленка можно установить ряд различных ритмов, — замечал Гласс. — Прибегнув к нелинейной математике, мы способны вполне отчетливо представить этот эффект и характерные последовательности ритмов. В настоящее время в программу подготовки кардиологов практически не входит математика, но в будущем данную проблему станут рассматривать именно так, как сделано нами».

Тем временем Ричард Дж. Коэн, кардиолог и физик, работая в рамках совместной программы Гарварда и Массачусетского технологического института в области медицинских наук и технологий, обнаружил целый ряд последовательных раздвоений периодов в экспериментах с собаками. Используя компьютерные модели, он изучил один из возможных режимов сердечной деятельности, при котором передняя волна электрической активности разбивается об островки ткани. «Перед нами вполне понятный пример феномена Файгенбаума, — пояснял Коэн, — регулярное явление, которое при определенных обстоятельствах превращается в хаотичное. Выясняется также, что электрическая активность сердца имеет множество параллелей с другими системами, склонными к хаотическому поведению».

Ученые из Университета Макгилл также обратились к накопленным ранее данным о различных типах нарушений сердечной деятельности. Один из таких синдромов состоит в том, что отклоняющиеся ритмы — эктопическая пульсация — перемежаются с нормальным сердцебиением синусного типа. Гласс и его коллеги изучали подобные случаи, подсчитывая число синусных биений среди эктопических. У некоторых пациентов данные расходились, но по какой-то причине они всегда выражались нечетным числом: 3, 5 или 7. У других больных число нормальных биений всегда являлось частью последовательности: 2, 5, 8, 11…

«Численные наблюдения, весьма непонятные, проделаны, но в механизме происходящего не так-то просто разобраться, — признавал Гласс. — В числах всегда присутствует некая регулярность, но им свойственна также и значительная доля неупорядоченности. Один из девизов нашей работы — поиск порядка внутри хаоса».

Традиционно изучение фибрилляции велось в двух направлениях. Один из классических подходов предполагал, что из патологических центров внутри самой мышечной ткани исходят вторичные задающие ритм сигналы, которые вступают в конфликт с главным импульсом. Считалось, что крошечные эктопические центры испускают волны с интервалами, неприемлемыми для нормального функционирования сердца, и взаимодействие их с главным, частично перекрываемым импульсом разрушает согласованную волну сокращений сердечной мышцы. Исследования ученых из Университета Макгилл до некоторой степени подтвердили эту гипотезу, продемонстрировав, что многие виды динамического неправильного поведения могут быть порождены взаимодействием внешней пульсации и присущего сердечной ткани ритма. Но тот факт, что влияние вторичных задающих ритм центров проявляется столь сильно, все еще нуждался в объяснении.

Сторонники другого подхода сосредоточили внимание не на зарождении электрических волн, а на том, как они проходят сквозь сердце. Именно в этом направлении работали ученые из Гарварда и Массачусетского технологического института. Они обнаружили, что определенные отклонения в самой волне, имеющей форму окружностей, способны генерировать так называемый вторичный ввод, при котором некоторые зоны сердца начинают новую пульсацию слишком рано, тем самым препятствуя временному расслаблению мышц, необходимому для поддержания согласованного движения крови.

Будучи знакомыми с методами нелинейной динамики, обе группы исследователей понимали, что небольшие изменения одного из параметров, например синхронности или электрической проводимости, могут приводить здоровую в других отношениях систему через точку ветвления к качественно новому поведению. Ученые приступили к изучению проблем сердца в глобальном масштабе, связав воедино ряд нарушений ритма, которые прежде считались не имеющими отношения друг к другу. Уинфри полагал, что, несмотря на различие подходов, и школа «эктопической пульсации», и школа «вторичного ввода» движутся в верном направлении. Этот вывод вытекал из общего топологического исследования.

Уинфри замечал, что «динамические явления, как правило, противоборствуют друг с другом, и сердце не исключение». Кардиологи надеялись, что их поиски увенчаются созданием научно обоснованного метода выделения группы риска — людей, наиболее подверженных фибрилляции, — новых способов конструирования дефибрилляторов и назначения лекарственных препаратов. Уинфри также питал надежду, что глобальное рассмотрение данных проблем в математическом аспекте обогатит теоретическую биологию — дисциплину, которая в Соединенных Штатах была развита довольно слабо.

Сейчас некоторые физиологи отзываются о так называемых динамических заболеваниях как о расстройствах различных систем организма человека, нарушениях координации или управления. «Системы, которые в нормальном состоянии колеблются, внезапно прекращают колебания или начинают осциллировать иным, неожиданным образом, а те системы, которые обычно не подвержены циклическим изменениям, вдруг обнаруживают их», — констатируют они. Подобные синдромы включают в себя расстройства дыхания: одышку, частое и затрудненное дыхание, дыхание Чейна-Стокса и детское удушье, которое ведет к внезапной смерти ребенка. Существуют динамические расстройства крови. К их числу принадлежит одна из форм лейкемии, при которой меняется соотношение белых и красных кровяных телец, тромбоцитов и лимфоцитов. Некоторые ученые полагают, что и шизофрения, вероятно, принадлежит к тому же разряду недугов, наряду с некоторыми типами депрессии.

Но физиологи разглядели хаос и в здоровом организме. Давно уже стало ясно, что нелинейность в процессах обратной связи служит целям регулирования и управления. Представьте себе линейный процесс, которому придали легкий толчок, как правило, он лишь слегка меняет направление. Нелинейный же процесс, подвергнутый тому же воздействию, обычно возвращается в свою начальную точку. Христиан Гюйгенс, голландский физик XVII века, внесший свой вклад в изобретение часов с маятником и в создание классической динамики, натолкнулся на один из ярчайших примеров данной формы регуляции (так, по крайней мере, гласит известная легенда). Однажды знаменитый ученый увидел, что несколько маятниковых часов, помещенных рядом на стене, колеблются совершенно синхронно, подобно тому как льются голоса в хоре. Он понимал, что часы не могли идти настолько точно, и никакие соображения, связанные с математическим описанием маятника, не позволяли объяснить такое таинственное распространение порядка от одних часов к другим. Гюйгенс справедливо предположил, что часы приводились в согласованное движение вибрацией, передаваемой через деревянную стену. Указанное явление, при котором один регулярный цикл воздействует на другой, ныне хорошо известно. Именно в силу этого явления Луна всегда обращена к Земле одним и тем же полушарием, да и вообще у спутников планет, как правило, отношение периода вращения вокруг своей оси к периоду обращения по орбите составляет 1 к 1, или 2 к 1, или 3 к 2. Этот эффект встречается и в электронике, позволяя радиоприемнику настраиваться на определенные сигналы, даже если в их частоте наблюдаются небольшие колебания. Воздействие регулярных циклов друг на друга объясняет способность групп осцилляторов, в том числе и биологических, таких как клетки сердечной ткани и нервные клетки, функционировать синхронно. Удивительный пример из мира природы дают светлячки, встречающиеся в Юго-Восточной Азии: в брачный период они собираются на деревьях в неисчислимых количествах и мерцают в удивительно гармоничном ритме.

Для всех явлений регуляции важным свойством является устойчивость — способность системы противостоять малым возмущениям. Для биологических объектов не менее важна гибкость, т. е. способность системы нормально функционировать под воздействием целого ряда частот. Преобладание одной-единственной частоты может воспрепятствовать адаптации системы к изменениям, так как живые организмы должны гибко реагировать на быстро меняющиеся и непредсказуемые обстоятельства. Ни один сердечный или дыхательный ритм не может быть сведен к точным периодичностям простейших физических моделей, причем это касается и более трудноуловимых ритмов остальных систем организма. Некоторые исследователи, в их числе Эри Голдбергер из медицинской школы Гарварда, предположили, что здоровая динамика жизненных процессов задается физическими фрактальными структурами, такими как разветвляющиеся сети бронхиальных трубок в легких и проводящие волокна в сердце, которые обеспечивают широкий диапазон ритмов. Размышляя об аргументах Роберта Шоу, Голдбергер заметил: «Фрактальные процессы, ассоциируемые с масштабными спектрами с широкой полосой частот, являются „информационно богатыми“. Напротив, периодичные состояния отражают спектр с узкой полосой частот и определяются монотонными, повторяющимися последовательностями, лишенными всякой информативности». Лечение подобных расстройств, как предположил Голдбергер, а также другие физиологи, может зависеть от расширения спектрального резерва системы, ее способности функционировать при множестве различных частот, не замыкаясь на одной из них.

Арнольд Мэнделл, психиатр из Сан-Диего, вставший на защиту Губермана и его гипотезы о движении зрачков у больных шизофренией, пошел еще дальше по пути изучения роли хаоса в физиологии. «Возможно ли, чтобы математическое отклонение, то есть хаос, было здоровьем? А то, что математика считает нормой, — предсказуемость и различимость структур — являлось болезнью?» Мэнделл занялся изучением хаоса в 1977 г., когда обнаружил «особенное поведение» определенных энзимов в мозгу, которое удавалось объяснить, лишь используя новые методы нелинейной математики. При его поддержке были проведены аналогичные исследования цикличных трехмерных молекул белка. Ученый заявлял, что подобные молекулы следует рассматривать не как статические структуры, а как динамические системы, способные к фазовым переходам. Рьяный приверженец новой дисциплины (по собственному его признанию), Мэнделл интересовался главным образом самым хаотичным из органов — мозгом. «Достижение равновесия в биологии означает смерть, — повторял он. — Для того чтобы выяснить, является ли мозг равновесной системой, достаточно попросить вас не думать несколько минут о слонах, и вы тут же убедитесь, что мозг отнюдь не равновесная система».

По мнению Мэнделла, открытия в области хаоса сулили переворот в клинических подходах к лечению психических расстройств. Если судить объективно, современная «психофармакология» — врачевание пилюлями всего и вся, от состояния тревоги и бессонницы до шизофрении, — почти не достигла успехов. Если и есть излечившиеся, то их совсем мало. Наиболее острые проявления душевной болезни можно снять, но насколько длительным будет эффект от лечения, никто не знает. Мэнделл указывал коллегам на отрицательное побочное действие целого ряда наиболее часто назначаемых препаратов. Производные фенотиазина, прописываемые больным шизофренией, лишь ухудшают общую клиническую картину; трициклические антидепрессанты увеличивают частоту смены настроения, приводя к долгосрочному росту числа рецидивов психопатологических проявлений, и так далее. Как заявил Мэнделл, только применение лития — и то лишь в определенных случаях — дает определенный эффект.

Ученый считал рассматриваемую проблему концептуальной. Традиционные методы лечения «наиболее нестабильного динамического механизма с бесконечным числом измерений» были линейными и редукционистскими. «Основная парадигма такова: ген —> пептид —> фермент —> нейротрансмиттер —> рецептор —> поведение животного —> клинический синдром —> лекарственный препарат —> клиническая оценка его эффективности. И такой подход определяет почти всю исследовательскую работу и лечение в рамках психофармакологии. Более пятидесяти трансмиттеров, тысячи типов клеток, сложная электромагнитная природа и длительная нестабильность порождают автономную активность на всех уровнях, начиная от протеинов и заканчивая электроэнцефалограммой. И мозг все еще считается простым химическим коммутатором!» Знакомые с нелинейной динамикой не могли воспринимать это иначе как наивность. Мэнделл убеждал коллег вникнуть в геометрию, присущую таким сложнейшим системам, как мозг.

Множество других ученых начали применять методу хаоса к изучению проблемы искусственного интеллекта. В частности, динамика систем, «блуждающих» между «бассейнами притяжения», привлекла тех, кто искал способ моделирования символов и воспоминаний. Физик, представлявший идеи как некие зоны с расплывчатыми границами, обособленные, но отчасти совпадающие, притягивающие, словно магниты, но не препятствующие движению, естественно, обращался к понятию фазового пространства с его кластерами сгруппированных объектов. Подобные модели обладали подходящими элементами: точками стабильности среди зон неустойчивости, а также областями с изменчивыми границами. Фрактальная их структура предполагала как раз ту особенность бесконечного возврата к самому себе, которая лежит в основе способности разума генерировать идеи, решения, эмоции и иные проявления сознательной деятельности.

Что бы ни думали о хаосе специалисты, исследующие процесс познания, они не могли больше моделировать разум как статическую структуру. Двигаясь от нейронов по восходящей, они выявили целую иерархическую сеть, которая обеспечивает взаимодействие микро- и макромасштабов, столь характерное для турбулентности в жидкостях и для других сложных динамических процессов.

Структура, зарождающаяся среди бесформенности, — такова главная прелесть живого и его основная загадка. Жизнь извлекает порядок из моря неустойчивости. Эрвин Шрёдингер, пионер квантовой теории и один из немногих физиков, которые размышляли над вопросами биологии, объяснил это сорок лет назад тем, что живому организму присущ «удивительный дар концентрировать в себе некую „струю порядка“ и таким образом избегать распада на хаос атомов». Будучи физиком, Шрёдингер четко понимал, что структура живого вещества отличается от тех форм материи, которыми занималась его наука. Основным «кирпичиком» в здании живого организма ему представлялся апериодичный кристалл (понятие ДНК тогда еще не было известно). «В физике до сего момента мы имели дело лишь с периодичными кристаллами. Эти весьма интересные и сложные объекты составляют одну из наиболее чарующих и любопытных материальных структур, с помощью которых неживая природа ставит ученого в тупик, и все же по сравнению с апериодичными кристаллами они довольно просты и скучны». Различия, о которых пишет Шрёдингер, можно сравнить с разницей между обоями и гобеленом, между регулярным повторением определенного образца и богатейшими вариациями творений художника. Физиков учили понимать лишь рисунок обоев, поэтому не удивительно, что их вклад в биологию столь невелик.

Точка зрения Шрёдингера казалась необычной. Та мысль, что жизнь одновременно и упорядоченна, и сложна, выглядела трюизмом. Представление об апериодичности как источнике особых свойств живого граничило с мистикой. Во времена Шрёдингера ни математики, ни физики по-настоящему не поддержали его идею. Для анализа иррегулярности как основного компонента жизни еще не существовало инструментов. Но сейчас они есть.

 

Глава 11

Хаос

Что лежит за ним?

 

Никак не менее чем классификация составляющих хаоса обозревается здесь.

Герман Мелвилл. Моби Дик

 

Двадцать лет назад Эдвард Лоренц размышлял о загадках атмосферы, Мишель Энон — о звездах, Роберт Мэй — о балансе в природе. Бенуа Мандельбро трудился в корпорации IBM, Митчелл Файгенбаум был студентом последнего курса Городского колледжа Нью-Йорка, Дойн Фармер — мальчишкой из Нью-Мексико. В те времена большинство ученых-практиков придерживались определенных воззрений на феномен сложности. Воззрения эти были настолько очевидными, что не нуждались в словесном изложении. Лишь позже потребовалось четко сформулировать эти взгляды, чтобы проанализировать их суть и вынести на всеобщее рассмотрение. Они сводились к следующему.

Поведение простых систем является простым. Механическое приспособление вроде маятника, электрический колебательный контур, гипотетическая популяция рыб в пруду — все подобные системы могут быть сведены к нескольким вполне понятным, совершенно детерминистским законам. Долгосрочное поведение их стабильно и предсказуемо.

Сложное поведение подразумевает сложные причины. Механическое устройство, сложная электрическая схема, реальная популяция животных в мире дикой природы, поток жидкости, биологический орган, пучок частиц, шторм в атмосфере, экономика целой страны — системы явно нестабильные, непредсказуемые или неконтролируемые. Состояние их зависит от множества параметров или подвергается воздействию случайных факторов извне.

Поведение разных систем различно. Нейробиолог, который исследует химические процессы, протекающие в нервных клетках человека, но мало что знает о памяти или восприятии, авиаконструктор, применяющий аэродинамическую трубу для решения задач газовой динамики, но не постигший математику турбулентности, экономист, анализирующий мотивацию приобретения того или иного товара, но не способный прогнозировать долгосрочный спрос, — эти и подобные им ученые уверены, что, коль скоро компоненты их дисциплин различны, сложные системы, состоящие из миллиардов этих компонентов, должны отличаться друг от друга.

Ныне все изменилось. За последние двадцать лет математики, физики, биологи и астрономы выработали альтернативную идею: простые системы дают начало сложному поведению, а сложные системы порождают простое поведение. И что самое главное, законы сложности обладают всеобщностью, которая ни в коей мере не зависит от особенностей составляющих систему элементов.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных