Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Построение математической модели




Для построения математической модели важно:

1) Иметь строгое представление о цели функционирования исследуемой системы.

2) Установить, значениями каких характеристик (переменных) исследуемой системы можно варьировать, т.е. выявить множество так называемых управляемых переменных.

3) Располагать информацией об ограничениях, которые определяют область допустимых значений управляемых переменных.

Заметим, что полученное с помощью некоторой модели конкретное оптимальное решение является наилучшим только в рамках использования именно этой модели, т.е. только тогда, когда выбранный критерий оптимизации полностью адекватен цели. В практических ситуациях этого достичь не просто.

В основе построения моделей лежит допущение о том, что все переменные, ограничения, функция цели количественно измеримы. Поэтому если Xj, j=1,...,n, представляют собой n управляемых переменных и условия функционирования исследуемой системы характеризуются m ограничениями, то математическая модель может быть записана в следующем виде:

Z = f (X1, X2,..., Xn) opt {max (min)} (1)

gi (X1, X2,..., Xn) £ (=) bi, i = 1,..., m (2)

X1, X2,..., Xn ³ 0. (3)

Соотношение (1) называется целевой функцией, а соотношения (2-3) – ограничениями модели. Ограничения (3) называются условиями неотрицательности. В большинстве случаев такое требование вполне естественно. Термин “оптимизация” обычно используется для обозначения процессов максимизации либо минимизации.

Теория и методы решения задач типа (1-3) носят название – математическое программирование. Традиционно в математическом программировании выделяют линейное программирование (целевая функция и ограничения являются линейными функциями). Это наиболее разработанный раздел математического программирования.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных